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1 Introduction

Value-at-Risk (VaR) is a commonly used measure of downside risk for investments. Financial

institutions are allowed by regulation (i.e. the Basel accords) to report VaR estimates for

their asset portfolios obtained from their own “internal” model. An important related issue

in this estimation is model uncertainty, as each model has its prespecified known form and

takes no account of possible uncertainty regarding the model structure. In addition, given

the availability of a considerable number of different risk-management methods, based on

academic literature and/or his expertise, it is a difficult task for a decision-maker to choose

the “best” model. Moreover, each model is an incomplete description of reality. Hence

relying upon a single model is dangerous to construct a VaR, i.e. a density forecast in the

left tail, as any model is “wrong” in some sense.

In this paper, we investigate the usefulness of combining density forecasts with the focus

on a particular region of the density. This is motivated in the first place by well known

advantages of combining point or density forecasts.1 We aim to obtain more realistic and

more accurate VaR estimates and density forecasts in the left tail. This motivates the

investigation of combining density forecasts based on their behavior in the left tail as using

the whole density does not necessarily lead to the same quality of forecasts as when we focus

purely on the left tail of a density. Therefore, we develop a density forecast combination

method that extends the method of Geweke and Amisano (2011), which uses the whole

density, by considering the censored likelihood (csl) scoring rule of Diks et al. (2011) that

focuses on a region of the densities’ support of particular interest, such as the left tail.

We use our novel methodology in an empirical application involving several recently

developed univariate volatility models. Hence, as a second contribution to the literature, we

make a comparison between these models with respect to their predictive ability in terms of

density forecasts. In particular, beyond the traditional GARCH model (Bollerslev, 1986),

we consider the Heavy model (Shephard and Sheppard, 2010) and the Realized GARCH

model (Hansen et al., 2012) that include realized measures, as well as the GAS model (Creal

et al., 2013). All models are applied to daily returns on the S&P 500, DJIA, FTSE and

Nikkei stock market indexes from 2000 until 2013.

1We discuss this literature in more detail below.
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We evaluate the added value of combining density forecasts both statistically and eco-

nomically. First, we test equal predictive accuracy in the left tail of a combined density

forecast based on our new method and three alternatives: (i) the method based on the

whole density, (ii) a benchmark that consists of equal weights, and (iii) the density forecast

of each individual model. Second, we compare 1- and 5-day VaR estimates based on these

methods using the Unconditional Coverage test and the Independence test of Christoffersen

(1998). In addition we test on equal accuracy based on an asymmetric tick-loss function

using the test procedure of Giacomini and White (2006).

Our results show statistically that density forecasts in the tail are more accurate if one

pools density forecasts using the csl scoring rule than using the aforementioned method,

using equal weights or using the density forecast of any individual volatility model. 90%

and 95% 1-day VaR estimates improve significantly compared to the other pooling methods

or the individual models, such that less violations are made and the unconditional coverage

matches more closely to the nominal value. Moreover, the accuracy of the VaR estimates

improves significantly upon using equal weights or any individual model according to the

asymmetric tick-loss function. In addition, we show that the combination weights based on

the csl scoring rule differ considerably from the weights obtained by using the whole density.

Hence, a certain volatility model could get no or less weight in the method of Geweke and

Amisano (2011), but may be useful in our new method.

We contribute to the literature on combining forecasts, see Timmermann (2006) for a

survey. Starting with the seminal work of Bates and Granger (1969), combining point fore-

casts appears to be a successful forecasting strategy, improving upon individual forecasts.

Timmermann (2006) shows from a theoretical point of view why forecast combinations

could work well. This is confirmed by numerous empirical applications in different areas

including macroeconomic and financial forecasting. For example, forecasting output growth

using individual predictors typically delivers forecasts that are unstable over time. Com-

bining forecasts offers more stable forecasts which improve upon autoregressive forecasts

(Stock and Watson, 2004). Rapach et al. (2010) provide similar evidence in the context of

equity premium prediction, by showing that combining forecasts leads to statistically and

economically significant out-of-sample gains relative to the historical average return.

Although the literature shows the usefulness of combining point forecasts, point forecasts
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themselves are not very informative if there is no indication of their uncertainty (see Granger

and Pesaran, 2000; Garratt et al., 2003). This finding has led to a growing interest in

density forecasts, which represent a full predictive distribution of a random variable and

hence provide the most complete measure of this uncertainty. It is a natural step forward to

bring together the concepts of forecast combinations and density forecasts. The literature

on combining density forecasts is yet scarce, although the interest in this topic of research

grows with applications to for example macro-economics (Jore et al., 2010; Aastveit et al.,

2011). Wallis (2005) considers a finite mixture distribution, which takes a weighted linear

combination of multiple density forecasts. Hall and Mitchell (2007) address the issue how

to choose the weights assigned to each competing density. They propose a methodology

with the aim to obtain the most accurate density forecast from a statistical point of view.

This boils down to using the logarithmic scoring rule, which takes the log of the predictive

density evaluated at the observed value of the variable of interest. Closely related is the

work of Geweke and Amisano (2011), who use the logarithmic scoring rule to obtain weights

to form optimal linear combinations of predictive densities. We extend this approach, by

substituting the log score rule by the censored likelihood scoring rule.

The remainder of this paper is organized as follows. Section 2 puts forward our method-

ology of combining density forecasts using the csl scoring rule. In Section 3, we provide

an overview of the univariate volatility models and the related assumed conditional density

functions, which are used in the empirical application (Section 4). Section 5 concludes.

2 Combining density forecasts

Suppose a decision maker has n different models for a variable of interest y. Conditional on

information available up to and including time t − 1, the predictive density corresponding

with a particular model at time t is of the form pt(yt|It−1, θAi
, Ai), where It−1 indicate

the information set up to and including time t − 1, Ai denotes the particular model i,

(i = 1, . . . , n) and θAi
the estimated parameters of model Ai given It−1. Suppose further

that the decision maker aims to choose the best predictive density at time T + 1, given

the available density forecasts from time t = 1, . . . , T . An often used approach is to make

use of scoring rules. A scoring rule measures the quality of density forecasts by assigning
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a numerical score.2 Typically, this rule is a objective function that depends on the density

forecast and the actually observed value, such that a higher score is associated with a

“better” density forecast. According to Gneiting and Raftery (2007), a scoring rule is

proper if it satisfies the condition that incorrect density forecasts do not receive a higher

average score than the true density. This property is important and a natural requirement

for any rational decision maker.

A well founded scoring rule is the log score function (see Mitchell and Hall, 2005; Amisano

and Giacomini, 2007). This function for a particular model Ai at a specific time t is defined

as

Sl(yt;Ai) = log pt(yt|It−1, Ai), (1)

with Sl the abbreviation of the log scoring rule, which simply takes the logarithm of the

predictive density evaluated at yt. This scoring rule is closely related to information the-

oretic goodness-of-fit measures such as the Kullback-Leibler Information Criterion (KLIC)

associated with the density forecast pt(yt|It−1, Ai). It can be shown that a higher value of

the logarithmic score coincides with a lower value of the KLIC. Put differently, maximizing

the logarithmic score is equivalent with minimizing the KLIC.

Geweke and Amisano (2011) argue that it is highly unlikely that one model is the

true model for constructing a predictive density. They propose therefore to combine the

predictive densities using the log score function of (1). In particular, they consider predictive

densities of the form

n
∑

i=1

wipt(yt|It−1, Ai), (2)

for i = 1, . . . , n and weights wi, restricted such that they are positive and sum to one to

ensure that (2) is a valid probability density function. It is natural to choose the weights

in such a way that the log score function in (1) is maximized (and hence the KLIC is

2Note that we use the term ‘score’ twice: (i) in the GAS models to indicate the derivative of the logarithm
of the density with respect to a certain parameter and (ii) a number that is assigned to measure density
forecasts.
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minimized):

Sl(YT , C) =

T
∑

t=1

log

[

n
∑

i=1

wipt(yt|It−1, Ai)

]

, (3)

with YT = y1, . . . yT , and C representing the fact that a combination of models is evaluated

instead of a single model Ai. Following Bacharach (1974), linear combinations of (subjective)

probability distributions are known as linear opinion pools. We use the term pooling and

linear opinion pools interchangeably in this paper.

The main idea of this paper is to extend the approach of Geweke and Amisano (2011)

by focusing on a particular region of interest of the predictive density. In order to do so,

we consider a scoring rule based on the censored likelihood (csl), advocated by Diks et al.

(2011). They prove that this scoring rule is proper and show the usefulness of this scoring

rule if one is interested in the accuracy of density forecasts in a specific region. In this study,

the focus is on the left tail, which is important for risk management purposes. The csl score

function for a specific region Bt for model Ai at time t reads

Scsl(yt|Ai) = I[yt ∈ Bt] log pt(yt|It−1, Ai)

+I[yt ∈ Bc
t ] log

(

∫

Bc
t

pt(y|It−1, Ai)dy

)

(4)

with Bc
t the complement of Bt and I[·] an indicator function that takes the value 1 if the

argument is true. The first part of this scoring rule focuses on the behavior of the density

forecast in the region of interest Bt. The second part computes the cdf of the density in

the region outside Bt.
3 Hence any observation outside Bt ignores the shape of pt(yt|It−1, Ai)

outside Bt. Note that (4) simplifies to the log scoring rule of (1) if Bt represents the full

sample space.

The next step is combine the predictive densities based on the csl scoring rule. That is,

we consider again predictive densities as defined in (2), however with the weights obtained

by optimizing the corresponding censored likelihood score function over the values YT =

3To interpret this second part, if Bt is the left tail yt+1 < r (with r a certain quantile of the cdf of yt), the
second part of (4) ensures that the tail probability implied by pt(yt|It−1, Ai) matches with the frequency at
which tail observations actually occur.
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y1, . . . yT :

Scsl(YT , C) =
T
∑

t=1

log

[

n
∑

i=1

wi

(

I[yt ∈ Bt]pt(yt|It−1, Ai)

+ I[yt ∈ Bc
t ]

∫

Bc
t

pt(y|It−1, Ai)dy

)]

.

(5)

We end this section by a brief comment about the optimization of the weights wt in

(3) and (5). Although (numerical) constrained optimization techniques may be used, we

consider the algorithm of Conflitti et al. (2012). This iterative algorithm is easy to implement

works well even when the number of forecasts to combine gets large. See Appendix A for

more details.

3 Models and distributions

This study focuses on density forecasting in the context of univariate volatility models.

We consider several classes of models, including the standard GARCH model of Bollerslev

(1986), the HEAVY model of Shephard and Sheppard (2010), the Realized GARCH model

of Hansen et al. (2012) and the GAS model of Creal et al. (2013). All models are based on

the following general specification for yt, the return for a financial asset at day t:

yt = µ+
√

htzt, with zt|It−1 ∼ D(0, 1), (6)

where µ denotes the conditional mean of the returns, ht the conditional variance and zt the

standardized unexpected return following a certain conditional distribution D(·) with mean

zero and unit variance. Further, It denotes the information set up to and including time t.4

The following subsections differentiate between various specifications for the dynamics of ht

and possible choices for the conditional return density function D(·).
4For ease of exposition, we assume the conditional mean fixed, although it could easily be extended to a

time-varying mean µt.
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3.1 Univariate volatility models

The first model we consider is the traditional GARCH(1,1) model (Bollerslev, 1986) for the

conditional variance ht:

ht = ω + α(yt−1 − µ)2 + βht−1, (7)

with ω > 0, α > 0 and β > 0 to ensure a positive variance. The past squared demeaned

return in this model is the innovation for the conditional variance. Many extensions of the

GARCH model are proposed (e.g. the EGARCH and GJR GARCH models Nelson, 1991;

Glosten et al., 1993), however we stick to the basis specification as given in (7). We restrict

also the other considered model classes in this study to the basis specification, although

many variants/extensions are possible. The reason is that the aim is to compare model

classes combined with distributions, and not models within a specific class.

Creal et al. (2013) develop a broader set of models which also includes the GARCH model

of (7), namely the Generalized Autoregressive Score (GAS) models. The key property of

these models is that innovations for time-varying parameters are based on the score of the

probability density function at time t. In terms of our univariate volatility models, the

time-varying parameters are the conditional variances ht. The GAS(1,1) model proposes

the following structure for ht:

ht = ω + αst−1 + βht−1,

st = Qt∇t, (8)

∇t =
∂ log p(yt|ht, It−1θ)

∂ht

,

with p(yt|ht, It−1, θ) the conditional return density, θ the parameter vector, ∇t the score and

Qt a scale factor. We follow Creal et al. (2013) and define the scale factor as 1/Et−1[∇2
t ],

where Et denotes the expectation with respect to the return density p(yt|ht, It−1, θ). For

example, when the returns yt follow a conditional Normal distribution, the GAS model

corresponds exactly to the GARCH(1,1) model of (7).5 In case of a fat-tailed Student-t

5When yt ∼ N(0, ht), ∇t = −0.5h−1
t + 0.5h−2

t y2t and Qt = 2h2
t . Hence the GAS model becomes

ht = ω + α(y2t − ht) + βht, which is equivalent with the GARCH model of (7).
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distribution for yt, the score based volatility model reads

ht = ω + α(1 + 3/ν)
ν + 1

(ν − 2) + (yt−1−µ)2

ht−1

(yt−1 − µ)2 + βht−1, (9)

and will be labeled as the GAS-t model. The specification downweights the more extreme

observations, in the sense that if the distribution is more heavy tailed, it is less likely that

an extreme observation is due to an increase in volatility. Note that this is a function of ν;

when ν → ∞, (9) converges to the GARCH(1,1) model of (7). We again impose ω > 0,α > 0

and β > 0 in the estimation of the parameters.

The third and fourth model classes in this study include realised measures to describe

the dynamics of daily volatility. A realised measure is a high-frequency estimator of the

variance of a particular asset return during the times the asset is trade on an exchange. For

example, the realised variance (RV) for a particular day sums the squared returns during

a specific intra-day period. The intuition is that realised measures are a more accurate

estimate of daily volatility than the squared daily return, as used in the GARCH models

(see Andersen et al., 2003).

A recently developed model that explicitly introduces high-frequency estimators in daily

volatility models is the HEAVY model of Shephard and Sheppard (2010). In particular, this

model assumes the following structure for the conditional variance ht and the expectation

of the realised measure ξt = E[RMt|It−1]:

ht = ω + αRMt−1 + βht−1, (10)

ξt = ωR + αRRMt−1 + βRξt−1. (11)

All parameters should be positive to avoid negative values of ht and ξt. The Heavy model

is seen to consist of a GARCH structure for both ht and ξt, with RMt as innovation term.

One may also include the squared (demeaned) daily return in (10), however in practice the

estimate of the corresponding parameter is generally close to zero and insignificant, as noted

by Shephard and Sheppard (2010). Equation (11) “completes” the system, in the sense that

without this equation one can only perform one-step ahead forecasts of the conditional

variance h from (10) since future values of the realised measure are unknown at time t.
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A second model that relates conditional volatility with realised measures is the Realized

GARCH model (RGARCH) of Hansen et al. (2012). The basic specification is given by:

ht = ω + αRMt−1 + βht−1, (12)

RMt = δ + φht + τ(zt) + ut, (13)

with τ(zt) the leverage function, defined in the basic form as τ1zt+ τ2(z
2
t −1). This function

allows for the empirical finding that negative and positive shocks may have a different

impact on the volatility. Except τ1, which is typically negative, all parameters are restricted

to be positive. The dynamics for ht are similar for both the HEAVY and RGARCH model,

however the difference arises in the specification of (the expectation of) RMt. The HEAVY

model proposes a GARCH structure for E[RMt|It−1], while the RGARCH model explicitly

relates RMt to the conditional variance at time t and introduces additionally a leverage

component.

3.2 Conditional distributions

We consider four possible distributions D(·) of zt in (6), which corresponds with the condi-

tional density of the returns yt . The starting point is the conditional Normal distribution,

since this distribution is simple and often used. However, to take into account possible con-

ditional non-normality, skewness, and excess kurtosis, we also allow the return yt to follow

a Student-t distribution with mean µ, variance ht and ν degrees of freedom. That is,

f(yt|µ, ht, ν) =
Γ(ν+1

2
)

Γ(ν
2
)
√

ht(ν − 2)π

(

1 +
(yt − µ)2

ht(ν − 2)

)

−
ν+1

2

. (14)

The degrees of freedom ν is treated as an unknown parameter and is estimated together with

the volatility parameters. In addition, ν > 2 is required to ensure a existing variance. The

excess kurtosis of the Student-t distribution is equal to 6/(ν − 4), hence it is only defined if

ν > 4. In general, a lower value of ν implies a more fat-tailed distribution. Third, we consider

the Laplace distribution, which also exhibits fatter tails than the Normal distribution, but
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does not involve additional parameters:

f(yt|µ, ht) =
1√
2ht

exp

(

−
√
2
|yt − µ|√

ht

)

(15)

with again mean µ and variance ht. Finally the Skewed-t distribution of Hansen (1994)

enables returns to be distributed asymmetrically, in contrast to the three symmetric distri-

butions discussed above. For a zero mean and unit variance variable zt = (yt − µ)/
√
ht, the

distribution reads

f(zt;λ, ν) =







bc
(

1 + 1
ν−2

( bzt+a
1−λ

)2
)

−
ν+1

2 if zt < −a
b

bc
(

1 + 1
ν−2

( bzt+a
1+λ

)2
)

−
ν+1

2 if zt ≥ −a
b

(16)

with

a = 4λc
ν − 2

ν − 1
, b2 = 1 + 3λ2 − a2, and c =

Γ(ν+1
2
)

√

π(ν − 2)Γ(ν
2
)

such that f(yt|µ, ht, ν, λ) = 1/htf(zt;λ, ν). Further, λ is the skewness parameter and ν

again represents the degrees of freedom. A (positive) negative value of λ indicates (positive)

negative skewness.

Table 1 summarizes the various choices for the dynamics of the conditional variance

ht and a conditional distribution D(·), both defined in the general specification for the

daily return of (6). For the GARCH(1,1), HEAVY and RGARCH models, we estimate

their parameters in combination with the assumption of the four described conditional

distributions of 3.2 (i.e. Normal, Student-t, Laplace and Skewed-t). Further, we assume a

Student-t and Laplace distribution for the GAS models. This delivers 14 models in total. We

estimate all models by Maximum Likelihood. This is not a computationally involved step,

since we are dealing with univariate models with a maximum of 8 parameters (RGARCH

models) to be estimated. In addition, we can estimate the HEAVY parameters of (10) and

(11) separately, see Shephard and Sheppard (2010) for more details.
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Table 1: Overview of volatility models and conditional distributions
This table reports the various choices for the dynamics of the conditional variance ht and the possible
conditional distributions D(·), both apparent in the general specification of (6). An “x” (“-”) denotes that
an particular specification together with a conditional distribution is (not) chosen.

Normal Student-t Laplace Skewed-t
GARCH(1,1) x x x x
GAS(1,1) xa x x -b

Heavy x x x x
RGARCH x x x x
a The GAS(1,1) model with Normal distributed errors is the
same as the GARCH(1,1) model with Normal errors.
b We leave the GAS(1,1) with Skewed-t distributed errors as a
topic of further research.

4 Application

This section contains an application of our new method of combining density forecasts,

applied in the context of univariate volatility models. In the following subsections, we

discuss the data and implementation details, the evaluation of the density forecasts and

finally the results.

4.1 Data and implementation details

We apply the volatility models of Section 3 to daily returns from four major stock market

indexes: S&P 500, DJIA, Nikkei and the FTSE. The sample period goes from January 3,

2000 until June 28, 2013. Daily returns as well as their corresponding realized measures

are obtained from the Oxford-Man Institute’s “realised library”.6 We follow Shephard and

Sheppard (2010) and use the realised kernel (see Barndorff-Nielsen et al., 2008) as the

realised measure at time t (RMt). When the exchange is closed, days are deleted from

the sample.7 Figure 1 shows the dynamics of the S&P 500 index and Japanese equity

index, together with the square root of the realised kernel estimate of the daily variance.

The dynamics of both indexes are quite similar, however the Nikkei index contains more

downward spikes (e.g. the 2011 Tohoku earthquake). Nevertheless, both return graphs

6See http://realized.oxford-man.ox.ac.uk/
7We have to delete 1-1.5% of the daily returns on the S&P500, DJIA and FTSE index. The Nikkei index

loses 3% of its daily returns.
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clearly show the presence of conditional heteroskedasticity, since calm periods and periods

of high volatility occur in an alternating pattern.

We apply a rolling window scheme to estimate the model parameters and construct

density forecasts. More specifically, we use an estimation window of approximately 3 years

(Test = 750 observations), estimate the model parameters and construct 1- until 5-step ahead

forecasts of ht at each time t (t = Test, Test + 1, . . . , T − 5). Given these forecasts, we also

construct the corresponding 1- and 5-step ahead density forecasts. After 750 subsequent

density forecasts (Tw = 750) have been obtained for each model, we optimize (3) and (5)

to obtain wt. In case of the csl score function, we define the region Bt as the left tail

yt < r̂κt with r̂κt the κth quantile of the empirical CDF of the 750 returns corresponding

with the estimation window Test. We repeat also this optimization by means of a rolling

window scheme with a window of Tw density forecasts evaluations at each time t (t =

Test + Tw + 1, Test + Tw + 2, . . . , T − 5). We choose κ equal to 0.15 and 0.25 respectively.

We choose Test = 750 such that there is a sufficient number of observations for parameter

estimation of the models. Further, we emphasize the trade-off in the choice of κ. Given

our interest in the left tail, we should take a small value of κ. However, the corresponding

number of observations in the region of interest becomes very low, such that the variation

in the csl scores of the different models declines.8 Similarly, there is a trade-off in the

choice of Tw. On the one hand, one would choose Tw as high as possible in order to use

the largest amount of available observations to compute the weights wt. But on the other

hand, if the relative performance of different models varies through time, one should take

this into account and choose a smaller value of Tw. In addition, Tw and κ are related in

the sense that a low value of κ combined with a small window results in a small amount

of observations within the region Bt. Hence given these trade-offs and the relation between

those two variables, we choose Tw and κ as 750 and 0.15 (0.25) such that there are 112 (187)

observations in the left tail.

8Recall that if yt is outside the region Bt with Bt the left tail yt < r̂κt , the csl score is the cdf of yt in
the complement of the region.
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Figure 1: Daily returns and realised measures
This figure depicts the daily (close-to-close) returns on the S&P 500 index and the Nikkei index (upper part) and a realised kernel estimate of the
corresponding daily (open-to-close) volatility (bottom part) from January 3, 2000, through June 27, 2013 (3,364 and 3,206 observations respectively). Both
daily returns and volatilities are given in percentages.
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4.2 Evaluation

We assess the accuracy of our (combined) density forecasts in two ways. First, we focus

purely on the predictive density in the left tail and investigate statistically whether pooling

based on censored densities adds any value. Following Diks et al. (2011), we test the null

hypothesis of equal performance of two density forecasts pt(yt; It−1, Ai) and pt(yt; It−1, Aj)

based on the scoring rule of (4).9 That is, given a sample of density forecasts and corre-

sponding realizations for m periods, define the relative score dt as

dt = Scsl(yt;Ai)− Scsl(yt;Aj) (17)

with corresponding null-hypothesis H0 : E[dt] = 0 for all m periods. The resulting Diebold

and Mariano (1995) test-statistic is then given by

tm =
d̄m

√

σ̂2
m/m

, (18)

with d̄m the sample average of the score differences and σ̂2
m a HAC-consistent variance

estimator of the true variance σ2
m of dt. A positive value means that the density forecasts in

the tail of model Ai are more accurate than the corresponding density forecasts of model Aj.

This test allows for parameter estimation uncertainty and fits the framework of Giacomini

and White (2006), who show that the use of a rolling window of m past observations for

parameter estimation simplifies the asymptotic theory of tests of equal predictive accuracy.

Moreover, the test allows to compare density forecasts of both nested and non-nested models.

The second way to explore the additional value of using censored densities in this study is

based on 1- and 5-day Value-at-Risk (VaR) estimates. For the individual models considered

in this study, the 1-day VaR estimate reads

V aR1−q
t = µ+ zq

√

ht, (19)

with µ the estimated conditional mean return, ht the (forecasted) conditional variance, and

zq represents the q-th quantile of the assumed cdf. However, we cannot apply (19) when

9In case we consider density forecasts using combinations, the density forecast is given by
∑n

i=1
witpt(yt; It−1, Ai).
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our predictive distribution is a combination of individual distributions.10 This also holds

for the h-day (h ≥ 2) VaR estimates if the assumed distribution is non-Normal. We use

simulation techniques to overcome this issue. That is, we simulate daily returns from each

individual model/distribution according to the assigned weight (and conditional variance)

to obtain the required quantile of the total distribution to compute the (1− q)% VaR.

Finally, we test the accuracy of the VaR estimates by focusing on two aspects. First,

we assess the frequency of the VaR violations with the unconditional coverage (UC) of

Kupiec (1995) and Christoffersen (1998). These tests compare the actual with the expected

number of violations. In addition, we test whether the violations occur in clusters by

means of the Independence test (Ind) of Christoffersen (1998). In order to apply both tests

on the estimated 5-day VaRs, we create first 5 different sub-series to avoid any overlap.

Thus, sub-series j contains the estimates {V aR1−q
j , V aR1−q

j+5, V aR1−q
j+10, . . .} for j = 1, . . . , 5.

According to the suggestion of Diebold et al. (1998), we use Bonferroni bounds for the 5

sub-series. That is, we assume that the VaR series has autocorrelation up to and including

lag 4, whereas each sub-series should have correct coverage and independent VaR violations.

Hence we therefore backtest each sub-series separately with a size of α/5, with α the used

significance level. Rejecting the null hypothesis of unconditional coverage/independence

occurs when the null is rejected for any of the 5 sub-series. Second, we compare the 1-day

VaR estimates of two different methods/models using the following asymmetric linear (tick)

loss function of order q, which is also used in the CPA test of Giacomini and White (2006):

L
q
Ai
(et) = (q − I[et < 0])et, (20)

where q = 5% and 10% and et = yt − V aR1−q
t . The loss function is asymmetric in the sense

that if there occurs a violation (i.e. et < 0)) the negative number q − 1 is multiplied by the

magnitude of the violation et, resulting in a penalization of (1− q)× et. In contrast to this,

if there is no violation, the loss is equal to q × et, which is considerable lower.11 Hence a

model Ai is more penalized when a VaR violation is observed. The larger the magnitude

of this violation, the larger the penalization. Similar to the density forecasts, we define the

10The VaR of a mixture of densities is not equal to the weighted average of each individual VaR.
11Suppose the 95% 1-day VaR of model A and B are equal to -5% and -8% respectively, while the actual

return is -6%. The loss associated with model A is equal to (0.05− 1)(−1) = 0.95, while the loss of model
B is equal to (0.05− 0)(−2) = 0.10.
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relative loss as

dqt = L
q
Ai
(et)− L

q
Aj
(et) (21)

and consider again a Diebold and Mariano (1995) type statistic as given in (18). A negative

value of the unconditional mean of dqt means that on average the VaR estimates of model

Ai are better than the corresponding estimates of model Aj .

4.3 Results

In this subsection, we present both the statistical and economic results. In order to under-

stand these results, we first present the weights which are obtained by optimizing the log

score function of (3) and the csl score function of (5). Figure 2 shows the result of the

iterative process of optimizing weights according to both score functions. The sub-graphs

depict the dynamics of the weights using daily returns from the DJIA index according to

the 14 models listed in Table 1.12 The top part of the figure corresponds with the log score

function, while the bottom part corresponds with the csl score function with κ = 0.25. The

top part shows that using the log score function results in a large weight for the Heavy

model with Skewed-t distributed errors until 2009. Moreover, it gets the full weight until

2008. Subsequently, the weight of the Heavy Skewed-t model declines to zero and there is

room for the Heavy N model and the Heavy model with Laplace distributed returns. The

latter gets almost a weight of 0.6 in 2011. Nevertheless, the Heavy Skewed-t model appears

again and dominates from 2012 onwards.

A rather different dynamic pattern arises from the lower part of Figure 2, i.e. when

the csl score function is optimized. Although the graph is similar in the sense that (i) the

Heavy Skewed-t model dominates the other models during 2006-2007 and since 2012 and

(ii) the Heavy model with Laplace distributed errors dominates during 2009-2012, the years

2008-2012 show two main differences. First, the GARCH Skewed-t model has more impact

in case of the csl score function, reaching a maximum weight of 0.65 at the end of 2008.

Second, the RGARCH model class gets considerably more weight, either combined with the

Laplace distribution (2009) or the Normal distribution (2010-2011). Hence the Heavy N

12Figure B.1 in Appendix B provides weights corresponding to the other three stock market indexes.
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model is replaced by the RGARCH N model during the period 2010-2012.

To ease the interpretation of this finding, Figure 3 sums up the weights according to each

model class (upper part) and distribution (lower part), for both types of scoring rules. It

seems that in case of the log score function, the Heavy model with Skewed-t distributed errors

dominates all the remaining models for most years. Only during 2009-2010, the RGARCH

model has some influence, while the Skewed-t distribution is replaced by the Normal and

Laplace distribution. In contrast to this, focusing of the left tail of the distribution does

lead to more influence of the GARCH and RGARCH class of models. Furthermore, the

Laplace distribution is more apparent during the years 2009-2012, with a climax at the

start of 2012. Finally, both the Laplace and Normal distribution characterize 2012, while

the log score function allocates the most weight to the Skewed-t distribution in that year.

4.3.1 Statistical results

Table 2 provides the importance of pooling of censored densities by showing results of

the t-test on equal predictive accuracy of (18). In more detail, we test equal accuracy

of the combined density forecasts based on the csl score function and based on the log

score function. In addition, we test the accuracy of the individual censored density of each

competing model. Panel A reports HAC-based t-statistics of the test of equal accuracy

of density forecasts made by means of combination, using the csl or log score function of

Section 2. As a benchmark, we consider also the case of equal weights assigned to each

competing density. A positive number corresponds with more accurate density forecasts of

the forecast method based on the csl score function. The table suggests that (except for the

FTSE returns), combined forecasts based on the csl score function statistically outperform

the density forecasts based on the log scoring rule. In addition, the benchmark forecasts

are also improved, especially when κ = 0.25, as indicated by the t-statistics 1.65 and 1.77

(DJIA), 3.85 and 4.62 (FTSE) and 1.66 (Nikkei). However for the S&P 500 returns this

improvement is not statistically significant.

Panel B shows test results of using combined forecasts based on the left tail and the

individual censored density forecasts. In general, using the csl score function results statis-

tically in better density forecasts. This holds in particular when κ = 0.25.13 Even if the

13Table B.1 in Appendix B provides results where the weights are based on the log score function. The
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Figure 2: Pooling weights DJIA index
This figure depicts the evolution of weights based on optimizing the logarithmic score function (upper
part) of (3) or the csl score function (bottom part) of (5) with a moving window of T = 750 one-step
ahead evaluated density forecasts using daily returns of the DJIA Index. In case of the csl score function,
Bt represents the left tail yt < r̂0.25 with r̂0.25 the 0.25th quantile of the empirical CDF of the moving
estimation window of 750 returns. The labels refer to the models that have the highest weight at a given
period. The abbreviations “ST”, “Lap” and “N” stand for Skewed-t, Laplace and Normal respectively.
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Figure 3: Pooling weights per model and distribution
This figure sums up the optimized weights per model class (top panels) and distribution (bottom panels) based on optimizing the logarithmic score function
(left part) of (3) or the csl score function of (5) (right part) with a moving window of T = 750 one-step ahead evaluated density forecasts using daily
returns of the DJIA Index. In case of the csl scoring function, Bt represents the left tail yt < r̂0.25 with r̂0.25 the 0.25th quantile of the empirical CDF of
the moving estimation window of 750 returns.
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Table 2: Evaluation of 1- and 5-day ahead censored density forecasts
This table reports results of testing equal predictive accuracy using the censored likelihood scoring rule of
(4), with Bt the left tail yt < r̂κ with r̂κ the κth quantile of the empirical CDF of the in-sample returns.
We set κ equal to 0.15 and 0.25 respectively. The weights are repeatedly optimized based on a moving
window of 750 evaluated density forecasts. We focus on 1- and 5-step ahead density forecasts. The test
statistic is given in (18). Panel A compares combined density forecasts where the weights are based on the
csl score function with (i) weights based on the log score function and (ii) each competing model gets the
same weight. In Panel B, we test equal predictive accuracy of combined density forecasts based on the csl
score function and density forecasts of each competing model, which are listed in Table 1. All models are
estimated with a moving window of 750 daily returns from the S&P500, DJIA, FTSE and Nikkei index
through the period January, 2000 - June, 2013. The test statistics are based on HAC-based standard errors
and 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei) out-of-sample observations respectively.

Panel A: Csl score function vs. log score function and equal weighted
S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

1-step ahead forecasts 5-step ahead forecasts
κ = 0.15

csl vs log 3.54∗∗∗ 3.60∗∗∗ −0.09 2.69∗∗ 3.76∗∗∗ 3.78∗∗∗ −1.15 2.36∗∗

csl vs eqw 1.14 1.08 2.36∗∗ 0.89 0.74 1.83∗ 3.17∗∗∗ 1.03
κ = 0.25

csl vs log 3.06∗∗∗ 3.34∗∗∗ −0.75 2.06∗∗ 3.34∗∗∗ 3.36∗∗∗ −0.96 1.93∗

csl vs eqw 1.32 1.65∗ 3.85∗∗∗ 1.66∗ 0.73 1.77∗ 4.62∗∗∗ 1.31

Panel B: Pooled (csl score function) vs. individual
κ = 0.15

GARCH N 3.22∗∗∗ 3.30∗∗∗ 4.17∗∗∗ 2.27∗∗ 2.34∗∗ 2.43∗∗ 3.74∗∗∗ 2.00∗∗

GARCH T 3.24∗∗∗ 2.96∗∗∗ 4.25∗∗∗ 2.26∗∗ 1.56 1.84∗ 4.41∗∗∗ 1.60
GARCH Lap 1.59 1.44 4.46∗∗∗ 2.65∗∗∗ 0.15 0.80 4.42∗∗∗ 1.34
GARCH ST 6.09∗∗∗ 5.64∗∗∗ 2.92∗∗∗ 3.71∗∗∗ 6.12∗∗∗ 5.96∗∗∗ 2.58∗∗∗ 3.50∗∗∗

HEAVY N 1.41 1.50 3.13∗∗∗ 1.34 1.58 1.64 3.64∗∗∗ 1.57
HEAVY T 0.92 1.16 2.95∗∗∗ 0.29 0.26 0.75 3.96∗∗∗ 1.25
HEAVY Lap −0.24 −0.13 3.42∗∗∗ 0.24 −0.99 −0.34 3.78∗∗∗ 0.16
HEAVY ST 5.41∗∗∗ 4.88∗∗∗ −0.23 3.32∗∗∗ 5.50∗∗∗ 5.01∗∗∗ 0.23 2.88∗∗∗

RGARCH N 1.44 1.53 3.57∗∗∗ 2.53∗∗ 3.09∗∗∗ 3.33∗∗∗ 5.62∗∗∗ 3.58∗∗∗

RGARCH T 1.22 1.07 3.35∗∗∗ 2.04∗∗ 2.82∗∗∗ 3.77∗∗∗ 5.49∗∗∗ 3.44∗∗∗

RGARCH Lap 0.21 0.26 3.62∗∗∗ 3.10∗∗∗ 1.36 2.38∗∗ 5.06∗∗∗ 3.63∗∗∗

RGARCH ST 5.51∗∗∗ 5.14∗∗∗ −0.60 5.64∗∗∗ 6.76∗∗∗ 7.32∗∗∗ 1.66∗ 6.31∗∗∗

GAS T 2.95∗∗∗ 2.71∗∗∗ 4.27∗∗∗ 2.07∗∗ 1.53 1.65∗ 4.47∗∗∗ 1.78∗

GAS Lap 1.45 1.42 4.43∗∗∗ 2.52∗∗ 0.09 0.70 4.45∗∗∗ 1.30
κ = 0.25

GARCH N 3.70∗∗∗ 3.89∗∗∗ 5.80∗∗∗ 2.53∗∗ 2.53∗∗ 2.64∗∗∗ 4.79∗∗∗ 2.09∗∗

GARCH T 3.65∗∗∗ 3.72∗∗∗ 5.88∗∗∗ 3.07∗∗∗ 1.58 1.96∗ 5.78∗∗∗ 2.00∗∗

GARCH Lap 1.89∗ 2.11∗∗ 5.52∗∗∗ 3.33∗∗∗ 0.11 0.82 5.39∗∗∗ 1.68∗

GARCH ST 5.98∗∗∗ 5.60∗∗∗ 2.58∗∗∗ 3.26∗∗∗ 5.63∗∗∗ 5.58∗∗∗ 2.40∗∗ 3.13∗∗∗

HEAVY N 2.12∗∗ 2.39∗∗ 5.16∗∗∗ 1.52 2.13∗∗ 2.26∗∗ 5.07∗∗∗ 1.65∗

HEAVY T 1.66∗ 2.43∗∗ 4.86∗∗∗ 1.29 0.94 1.65∗ 5.62∗∗∗ 1.54
HEAVY Lap 0.18 0.81 4.59∗∗∗ 1.40 −0.80 0.20 4.94∗∗∗ 0.85
HEAVY ST 5.00∗∗∗ 4.50∗∗∗ −1.25 2.35∗∗ 5.34∗∗∗ 4.55∗∗∗ −0.35 2.52∗∗

RGARCH N 2.52∗∗ 2.81∗∗∗ 5.62∗∗∗ 2.93∗∗∗ 3.98∗∗∗ 4.10∗∗∗ 7.05∗∗∗ 3.83∗∗∗

RGARCH T 2.33∗∗ 2.31∗∗ 5.25∗∗∗ 3.05∗∗∗ 3.68∗∗∗ 4.27∗∗∗ 7.09∗∗∗ 3.93∗∗∗

RGARCH Lap 0.66 0.86 4.78∗∗∗ 3.86∗∗∗ 1.30 2.33∗∗ 6.08∗∗∗ 4.12∗∗∗

RGARCH ST 6.00∗∗∗ 5.88∗∗∗ −1.19 7.56∗∗∗ 8.71∗∗∗ 9.16∗∗∗ 2.32∗∗ 8.57∗∗∗

GAS T 3.36∗∗∗ 3.46∗∗∗ 5.89∗∗∗ 2.83∗∗∗ 1.57 1.82∗ 5.87∗∗∗ 2.19∗∗

GAS Lap 1.75∗ 2.05∗∗ 5.48∗∗∗ 3.30∗∗∗ 0.02 0.69 5.44∗∗∗ 1.74∗
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null hypothesis cannot be rejected for a particular model, this result is not consistent for all

data sets. For example, the Heavy Lap model performs well in case of the US stock market

indexes, but is statistically beaten in case of the FTSE returns. In general, there is no

striking difference between the 1-step and the 5-step ahead density forecasts. Interestingly,

considering the S&P 500 and DJIA indexes in the upper part of Panel B, the RGARCH

model with Normal or Student-t distributed errors produces accurate 1-step ahead density

forecasts, while forecasting 5 steps ahead results in inaccurate forecasts compared to pooled

density forecasts with weights based on the 15th quantile of the individual densities.

Table 3 reports additional evidence of the added value of pooling using the csl score

function, by providing the csl score over the out-of-sample period:

T
∑

t=1

log

[

n
∑

i=1

w∗

i,t−1

(

I[yt ∈ Bt] log pt(yt; It−1, Ai)

+ I[yt ∈ Bc
t ]

∫

Bc
t

pt(y; It−1, Ai)dy

)] (22)

where w∗

i,t−1 is the optimized weight for model Ai at the end of trading day t − 1, based

on the evaluated density forecasts at time t − Tw through t − 1. In addition, we provide

corresponding values of the individual models with bold numbers representing the maximum

csl score over the competing models. The pooled csl scores are higher than the csl scores

of most of the individual models. If this is not the case, the differences are small, with a

maximum difference of 9 points (S&P 500, 5-step ahead forecasts with κ = 0.25). Further,

the csl score of our pooling method are higher than the scores of the remaining 13 models

(12 in case of the FTSE index), with differences that can be quite substantial. For example,

if one favours the best performing individual model, i.e. the Heavy Lap model, this results

in a loss of 43 or 46 points with respect to the pooled csl score based with κ = 0.15 in case

of the FTSE data set. Finally, there is quite some positive difference between the csl scores

of pooling with weights based on the csl score function and simply using equal weights.

For the US and Japanese indexes, the difference is on average around 8 points, however in

case of the FTSE index, the difference increases to 20 (κ = 0.15) or 45 (κ = 0.25) points

results indicate that the pooled density forecasts do not add any value in case of the S&P 500, DJIA and
Nikkei indexes. Only in case of the FTSE index, there is evidence that the combined density forecasts
statistically outperform the individual density forecasts.
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Figure 4: Censored likelihood scores w.r.t. individual models
This figure depicts the cumulative sum of the difference of the censored likelihood score corresponding
with one-step ahead density forecasts of the pooled densities and the csl score of the three best competing
individual models according to Table 3. The weights of the pooled densities are based on maximizing the
csl score function of (5) with a moving window of 750 evaluated density forecasts, using daily returns of
the DJIA index. Further, Bt the left tail yt < r̂0.25 with r̂0.25 the κth quantile of the empirical CDF of the
in-sample returns.
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respectively. Note that the table relates to Table 2, in the sense that a negative t-stat of

a particular model corresponds with a higher csl score of that model than the pooled csl

score. We refer to Table B.2 in Appendix B for similar type of results regarding the log

scores.

Figure 4 illustrates the evolution of the cumulative gain in the csl scores of Table 3

through time. In particular, it shows the cumulative difference of the csl scores corre-

sponding with the combined density forecasts relative to the csl scores of the GARCH and

Heavy models with a Skewed-t distribution and the benchmark (i.e. pooling based on equal

weights). The figure shows two different patterns. First, the gain of pooling with respect

to the benchmark occurs mainly during the first years, decreases during the crisis period

and increases slowly from 2009 onwards. Second, pooling does not add much value with

respect to the Skewed-t distribution during the first years, regardless whether the GARCH

or Heavy model class is used. However, the gain becomes striking at the end of 2008 and
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Table 3: Censored likelihood scores
This table reports censored likelihood scores corresponding with individual models and combined models,
where the weights are based on optimizing the csl score function of (5), with Bt the left tail yt < r̂κ with
r̂κ the κth quantile of the empirical CDF of the in-sample returns. We set κ equal to 0.15 and 0.25. The
weights are repeatedly optimized based on a moving window of 750 evaluated density forecasts. In addition,
csl scores are reported of combined models using equal weights (eqw). The bold numbers represent the
maximum of all models per data set. All models are estimated with a moving window of 750 daily returns
from the S&P500, DJIA, FTSE and Nikkei index through the period January, 2000 - June, 2013. The
number of out-of-sample observations are equal to 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766
(Nikkei)respectively.

S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei
1-step ahead forecasts 5-step ahead forecasts

κ = 0.15
GARCH N -1052 -1014 -1020 -1002 -1081 -1031 -1050 -1083
GARCH T -1030 -991 -1002 -937 -1039 -993 -1013 -956
GARCH Lap -1019 -980 -1001 -934 -1029 -985 -1009 -952
GARCH ST -1091 -1043 -964 -961 -1105 -1049 -973 -986
HEAVY N -1026 -990 -988 -979 -1055 -1005 -1027 -1060
HEAVY T -1013 -976 -983 -919 -1030 -985 -1007 -962
HEAVY Lap -1004 -967 -990 -919 -1019 -977 -1004 -944

HEAVY ST -1075 -1028 -946 -950 -1093 -1037 -959 -995
RGARCH N -1022 -983 -992 -1001 -1079 -1027 -1051 -1096
RGARCH T -1014 -975 -987 -936 -1050 -1010 -1023 -994
RGARCH Lap -1008 -970 -991 -953 -1040 -998 -1017 -999
RGARCH ST -1080 -1039 -944 -985 -1114 -1074 -969 -1055
GAS T -1031 -990 -1005 -941 -1039 -992 -1015 -964
GAS Lap -1019 -980 -1001 -935 -1028 -984 -1010 -951
pooled csl -1006 -968 -947 -917 -1027 -979 -958 -943
eqw -1013 -974 -968 -922 -1032 -988 -984 -950

κ = 0.25
GARCH N -1480 -1443 -1364 -1338 -1508 -1458 -1398 -1421
GARCH T -1454 -1419 -1343 -1274 -1461 -1417 -1358 -1295
GARCH Lap -1440 -1404 -1336 -1273 -1447 -1405 -1348 -1291
GARCH ST -1506 -1460 -1270 -1281 -1521 -1468 -1286 -1312
HEAVY N -1453 -1421 -1332 -1313 -1486 -1438 -1376 -1398
HEAVY T -1436 -1405 -1324 -1253 -1455 -1414 -1353 -1300
HEAVY Lap -1422 -1390 -1324 -1256 -1437 -1399 -1342 -1283

HEAVY ST -1485 -1439 -1244 -1265 -1512 -1456 -1265 -1318
RGARCH N -1454 -1416 -1337 -1340 -1516 -1463 -1402 -1435
RGARCH T -1441 -1403 -1328 -1274 -1481 -1441 -1370 -1334
RGARCH Lap -1427 -1391 -1325 -1290 -1460 -1420 -1356 -1338
RGARCH ST -1502 -1466 -1244 -1337 -1555 -1518 -1285 -1427
GAS T -1455 -1418 -1346 -1278 -1462 -1416 -1360 -1303
GAS Lap -1439 -1404 -1336 -1274 -1446 -1404 -1349 -1291
pooled csl -1420 -1381 -1251 -1243 -1446 -1397 -1268 -1276
eqw -1430 -1394 -1295 -1255 -1451 -1409 -1317 -1287
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in 2011. This result is related with Figure 2, as the Heavy model with Skewed-t distributed

returns dominates all the remaining models until the end of 2009.

4.3.2 Economic results

Tables 4 and 5 shed light on the economic impact of pooling (censored) density forecasts by

shedding VaR estimates. For each data set, we first compare the frequency and indepen-

dence of the VaR violations corresponding with the combined densities based on pooling,

either using the csl or log scoring rule or using equally weights. The latter can be seen

as a benchmark. We report results of the approach using equal weights by using simula-

tion corresponding with the actual weight (eqw(1)), and the approach that simply takes

the average of all individual VaR’s (eqw(2)), as done in Giacomini and Komunjer (2005).

Second, we show results of each individual model per data set. Furthermore, we compare

the accuracy of the 1-day VaR estimates based on the csl scoring rule with VaR estimates

from any other pooling method or from any individual model by applying a t-test based

on the asymmetric tick loss function of (21). A negative number indicates that the pooled

csl based VaR estimates are more accurate. Apart from this test, both tables contain the

same type of results, although Table 4 focuses on the 1-day VaR estimates, while Table 5

provides results of the 5-day VaR estimates.

Three main conclusions are apparent from Table 4. First, the VaR estimates correspond-

ing with our new proposed technique outperform the benchmark of equal weights, both

regarding the frequency of violations and the test on equal accuracy. Using equal weights

leads to rejection of the nominal frequency of 5% for the S&P 500 and FTSE indexes, while

this is not the case for VaR estimates based on the csl score function. Furthermore, the 90%

VaR estimates using the csl scoring rule are closer to its nominal values using optimized

weights. According to the t-statistics of equal accuracy of the VaR estimates, using the csl

score function produces significantly better VaR estimates than the benchmark in case of

the S&P 500 index (both 90% and 95%) and the Nikkei index (90%).

Second, pooling based on the csl scoring rule generally outperforms pooling based on

the log scoring rule, but only from the perspective of the nominal frequency of the VaR

violations. The differences between the csl and log scoring rules arise mainly in the case of

US stock market indexes. For example, considering the S&P 500, using the whole density
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Table 4: Evaluation of 1-day Value-at-Risk estimates
This table provides the accuracy of 1-day VaR estimates. For each data set, the table reports results based on
combined density forecasts using the log scoring rule of (1), the csl scoring rule of (4) and using equal weights
applied on 14 volatility models using daily returns from the S&P 500, DJIA, FTSE and Nikkei index over
the period January, 2000 - June, 2013. In case of using equal weights, we report the approach by means of
simulation (eqw(1)) and the approach that takes simply the average of all individual VaR estimates (eqw(2)).
Further, we report results based on VaR estimates of the individual models. The columns represent for both
95% and 90% VaRs the number of violations, the percentage of violations with respect to the total number
of VaR estimates in parentheses, the p-values of the Unconditional Coverage (UC) and Independence (Ind)
test of Christoffersen (1998) and finally HAC-based t-statistics of the unconditional test on predictive ability
of the combination method/individual model and the combined density forecasts with weights based on the
csl score function, using the tick-loss function of (21). Bold numbers represent those models which have
p-values for the UC and Ind test above 5% for both horizons. The number of estimated VaRs for each series
is equal to 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei) respectively.

S&P500
Model/Sc. rule V(%) puc pind t-stat V(%) puc pind t-stat

95% VaR 90% VaR
csl 111 (5.97) 0.063 0.484 200 (10.75) 0.284 0.056

log 115 (6.18) 0.024 0.375 0.44 199 (10.70) 0.320 0.032 1.19
eqw(1) 123 (6.61) 0.002 0.089 −2.50∗∗ 213 (11.45) 0.041 0.043 −1.90∗

eqw(2) 120 (6.45) 0.006 0.117 −2.38∗∗ 208 (11.18) 0.095 0.042 −1.39
GARCH N 124 (6.67) 0.002 0.192 −3.50∗∗∗ 192 (10.32) 0.644 0.127 −2.41∗∗

GARCH T 132 (7.10) 0.000 0.385 −3.58∗∗∗ 229 (12.31) 0.001 0.021 −2.98∗∗∗

GARCH Lap 125 (6.72) 0.001 0.177 −3.35∗∗∗ 229 (12.31) 0.001 0.021 −2.81∗∗∗

GARCH ST 123 (6.61) 0.002 0.209 −3.50∗∗∗ 207 (11.13) 0.110 0.084 −2.57∗∗

HEAVY N 125 (6.72) 0.001 0.177 −1.92∗ 191 (10.27) 0.700 0.020 1.21
HEAVY T 133 (7.15) 0.000 0.360 −1.93∗ 215 (11.56) 0.028 0.371 −0.56
HEAVY Lap 116 (6.24) 0.018 0.165 −0.69 220 (11.83) 0.010 0.166 0.29
HEAVY ST 113 (6.08) 0.039 0.210 −0.47 194 (10.43) 0.539 0.058 0.92
RGARCH N 113 (6.08) 0.039 0.427 −1.92∗ 185 (9.95) 0.938 0.041 −0.53
RGARCH T 123 (6.61) 0.002 0.209 −2.15∗∗ 208 (11.18) 0.095 0.042 −2.40∗∗

RGARCH Lap 108 (5.81) 0.119 0.577 −1.86∗ 214 (11.51) 0.034 0.038 −2.00∗∗

RGARCH ST 103 (5.54) 0.295 0.750 −0.96 189 (10.16) 0.817 0.168 −1.23
GAS T 130 (6.99) 0.000 0.044 −3.28∗∗∗ 223 (11.99) 0.005 0.024 −2.67∗∗∗

GAS Lap 122 (6.56) 0.003 0.032 −3.03∗∗∗ 223 (11.99) 0.005 0.012 −2.51∗∗

DJIA
csl 116 (6.23) 0.019 0.744 202 (10.85) 0.228 0.024
log 120 (6.44) 0.006 0.900 1.19 211 (11.33) 0.060 0.031 0.65
eqw(1) 120 (6.44) 0.006 0.792 −1.06 210 (11.28) 0.071 0.112 −0.79
eqw(2) 118 (6.34) 0.011 0.567 −0.81 209 (11.22) 0.083 0.123 −0.73
GARCH N 130 (6.98) 0.000 0.456 −3.08∗∗∗ 198 (10.63) 0.366 0.074 −1.92∗

GARCH T 137 (7.36) 0.000 0.479 −2.95∗∗∗ 221 (11.87) 0.009 0.059 −2.43∗∗

GARCH Lap 116 (6.23) 0.019 0.364 −2.47∗∗ 223 (11.98) 0.006 0.204 −2.35∗∗

GARCH ST 124 (6.66) 0.002 0.647 −2.62∗∗∗ 212 (11.39) 0.051 0.150 −2.10∗∗

HEAVY N 130 (6.98) 0.000 0.713 0.12 201 (10.79) 0.258 0.161 1.81∗

HEAVY T 138 (7.41) 0.000 0.690 −0.47 214 (11.49) 0.035 0.074 −0.08
HEAVY Lap 103 (5.53) 0.300 0.876 1.18 215 (11.55) 0.029 0.037 0.55
HEAVY ST 112 (6.02) 0.051 0.597 1.39 203 (10.90) 0.200 0.042 1.15
RGARCH N 117 (6.28) 0.014 0.783 −1.15 187 (10.04) 0.951 0.069 0.46
RGARCH T 124 (6.66) 0.002 0.767 −1.69∗ 202 (10.85) 0.228 0.048 −1.02
RGARCH Lap 103 (5.53) 0.300 0.876 −1.03 199 (10.69) 0.328 0.117 −0.49
RGARCH ST 101 (5.42) 0.407 0.798 −0.33 191 (10.26) 0.712 0.045 −0.67
GAS T 133 (7.14) 0.000 0.201 −2.79∗∗∗ 216 (11.60) 0.024 0.059 −1.97∗∗

GAS Lap 113 (6.07) 0.040 0.220 −2.40∗∗ 219 (11.76) 0.013 0.074 −2.00∗∗
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FTSE
Sc. rule/Model V(%) puc pind t-stat V(%) puc pind t-stat

95% VaR 90% VaR
csl 112 (5.96) 0.063 0.246 208 (11.08) 0.126 0.483

log 108 (5.75) 0.144 0.328 0.94 206 (10.97) 0.167 0.398 1.44
eqw(1) 115 (6.12) 0.031 0.195 −1.49 208 (11.08) 0.126 0.232 −1.24
eqw(2) 114 (6.07) 0.039 0.211 −1.54 209 (11.13) 0.109 0.213 −1.34
GARCH N 122 (6.50) 0.004 0.737 −2.52∗∗ 203 (10.81) 0.248 0.145 −1.98∗∗

GARCH T 129 (6.87) 0.000 0.502 −2.61∗∗∗ 222 (11.82) 0.010 0.975 −2.39∗∗

GARCH Lap 105 (5.59) 0.248 0.714 −2.26∗∗ 224 (11.93) 0.007 0.721 −2.48∗∗

GARCH ST 106 (5.64) 0.209 0.678 −2.40∗∗ 210 (11.18) 0.093 0.422 −1.93∗

HEAVY N 124 (6.60) 0.002 0.405 −0.11 202 (10.76) 0.280 0.691 1.25
HEAVY T 135 (7.19) 0.000 0.179 −0.76 219 (11.66) 0.019 0.433 0.19
HEAVY Lap 97 (5.17) 0.744 0.985 −0.05 227 (12.09) 0.003 0.336 −0.56
HEAVY ST 103 (5.48) 0.342 0.786 0.75 199 (10.60) 0.393 0.808 0.99
RGARCH N 128 (6.82) 0.001 0.308 −1.98∗∗ 201 (10.70) 0.315 0.105 −0.98
RGARCH T 136 (7.24) 0.000 0.316 −2.22∗∗ 220 (11.71) 0.016 0.285 −1.56
RGARCH Lap 101 (5.38) 0.457 0.861 −0.93 225 (11.98) 0.005 0.186 −1.96∗

RGARCH ST 112 (5.96) 0.063 0.246 −0.53 200 (10.65) 0.353 0.190 −0.53
GAS T 126 (6.71) 0.001 0.354 −2.60∗∗∗ 218 (11.61) 0.023 0.963 −2.34∗∗

GAS Lap 93 (4.95) 0.924 0.416 −2.53∗∗ 224 (11.93) 0.007 0.721 −2.26∗∗

Nikkei
csl 90 (5.11) 0.836 0.161 178 (10.10) 0.887 0.001
log 89 (5.05) 0.922 0.175 −0.03 172 (9.76) 0.738 0.004 −0.72
eqw(1) 84 (4.77) 0.652 0.248 −0.62 167 (9.48) 0.462 0.007 −1.51
eqw(2) 86 (4.88) 0.818 0.221 −1.05 164 (9.31) 0.328 0.011 −1.78∗

GARCH N 104 (5.90) 0.091 0.042 −0.85 166 (9.42) 0.414 0.047 −1.69∗

GARCH T 108 (6.13) 0.035 0.027 −1.04 189 (10.73) 0.314 0.030 −1.51
GARCH Lap 88 (4.99) 0.991 0.182 −0.66 181 (10.27) 0.704 0.038 −1.64
GARCH ST 100 (5.68) 0.202 0.062 −0.72 178 (10.10) 0.887 0.026 −1.50
HEAVY N 91 (5.16) 0.752 0.142 1.73∗ 162 (9.19) 0.254 0.014 1.42
HEAVY T 99 (5.62) 0.242 0.072 1.70∗ 176 (9.99) 0.987 0.002 2.46∗∗

HEAVY Lap 74 (4.20) 0.113 0.150 1.15 175 (9.93) 0.924 0.002 2.02∗∗

HEAVY ST 88 (4.99) 0.991 0.189 1.93∗ 172 (9.76) 0.738 0.004 1.90∗

RGARCH N 85 (4.82) 0.733 0.566 −2.51∗∗ 144 (8.17) 0.008 0.110 −3.56∗∗∗

RGARCH T 90 (5.11) 0.836 0.417 −2.71∗∗∗ 160 (9.08) 0.192 0.094 −2.81∗∗∗

RGARCH Lap 73 (4.14) 0.089 0.993 −2.88∗∗∗ 151 (8.57) 0.041 0.217 −3.32∗∗∗

RGARCH ST 76 (4.31) 0.176 0.889 −3.11∗∗∗ 152 (8.63) 0.050 0.200 −3.48∗∗∗

GAS T 106 (6.02) 0.058 0.034 −1.48 191 (10.84) 0.246 0.011 −1.52
GAS Lap 86 (4.88) 0.818 0.213 −1.60 183 (10.39) 0.591 0.002 −2.19∗∗
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Table 5: Evaluation of 5-day Value-at-Risk estimates
This table provides the accuracy of 5-day VaR estimates. For each data set, the table reports results based
on combined density forecasts using the log scoring rule of (1), the csl scoring rule of (4) and using equal
weights applied on 14 volatility models using daily returns from the S&P 500, DJIA, FTSE and Nikkei
index over the period January, 2000 - June, 2013. I In case of using equal weights, we report the approach
by means of simulation (eqw(1)) and the approach that takes simply the average of all individual VaR
estimates (eqw(2)). Further, we report results based on VaR estimates of the individual models. For each
combination method/model, we have 5 different sub-series of VaRs. The table reports for both 95% and 90%
VaRs the sub-series that has the lowest p-value of the test on unconditional coverage of the VaR estimates.
The columns represents the corresponding number of violations, the percentage of violations with respect to
the total number of VaR estimates in parentheses and the p-values of the Unconditional Coverage (UC) and
Independence (Ind) test of Christoffersen (1998). The number of estimated VaRs for each series is equal to
372 (S&P 500), 372 (DJIA), 375(FTSE) and 352 (Nikkei) respectively.

S&P500
Model/sc. rule V(%) puc pm,ind V(%) puc pind

95% VaR 90% VaR
csl 24 (6.45) 0.218 0.712 43 (11.56) 0.327 0.615
log 24 (6.45) 0.218 0.712 44 (11.83) 0.252 0.703
eqw(1) 24 (6.45) 0.218 0.615 46 (12.37) 0.141 0.888
eqw(2) 24 (6.45) 0.218 0.615 44 (11.83) 0.252 0.913
GARCH N 26 (6.99) 0.096 0.479 45 (12.10) 0.190 0.461
GARCH T 28 (7.53) 0.037 0.390 55 (14.78) 0.004 0.360
GARCH Lap 25 (6.72) 0.147 0.544 49 (13.17) 0.051 0.237
GARCH ST 24 (6.45) 0.218 0.615 46 (12.37) 0.141 0.396
HEAVY N 27 (7.26) 0.060 0.455 43 (11.56) 0.327 0.993
HEAVY T 28 (7.53) 0.037 0.531 45 (12.10) 0.190 0.821
HEAVY Lap 26 (6.99) 0.096 0.889 47 (12.63) 0.102 0.648
HEAVY ST 15 (4.03) 0.376 0.278 43 (11.56) 0.327 0.993
RGARCH N 23 (6.18) 0.312 0.729 30 (8.06) 0.199 0.802
RGARCH T 24 (6.45) 0.218 0.712 43 (11.56) 0.327 0.993
RGARCH Lap 23 (6.18) 0.312 0.729 33 (8.89) 0.470 0.971
RGARCH ST 13 (3.49) 0.160 0.427 29 (7.80) 0.142 0.337
GAS T 28 (7.53) 0.037 0.363 51 (13.71) 0.023 0.652
GAS Lap 25 (6.72) 0.147 0.320 49 (13.17) 0.051 0.237

DJIA
csl 25 (6.72) 0.147 0.579 47 (12.63) 0.102 0.648
log 25 (6.72) 0.147 0.579 47 (12.63) 0.102 0.648
eqw(1) 26 (6.99) 0.096 0.844 48 (12.90) 0.073 0.567
eqw(2) 28 (7.53) 0.037 0.492 48 (12.90) 0.073 0.567
GARCH N 32 (8.60) 0.004 0.830 48 (12.90) 0.073 0.567
GARCH T 29 (7.80) 0.022 0.570 50 (13.44) 0.035 0.196
GARCH Lap 28 (7.53) 0.037 0.492 48 (12.90) 0.073 0.284
GARCH ST 28 (7.53) 0.037 0.492 49 (13.17) 0.051 0.237
HEAVY N 26 (6.99) 0.096 0.511 49 (13.17) 0.051 0.492
HEAVY T 27 (7.26) 0.060 0.933 53 (14.25) 0.010 0.494
HEAVY Lap 23 (6.18) 0.312 0.729 51 (13.71) 0.023 0.360
HEAVY ST 24 (6.45) 0.218 0.652 48 (12.90) 0.073 0.567
RGARCH N 23 (6.18) 0.312 0.729 30 (8.04) 0.194 0.763
RGARCH T 25 (6.72) 0.147 0.579 31 (8.31) 0.264 0.782
RGARCH Lap 15 (4.03) 0.376 0.132 30 (8.04) 0.194 0.763
RGARCH ST 14 (3.76) 0.253 0.099 30 (8.04) 0.194 0.763
GAS T 28 (7.53) 0.037 0.492 46 (12.37) 0.141 0.733
GAS Lap 27 (7.26) 0.060 0.418 46 (12.37) 0.141 0.733
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FTSE
Sc. rule/Model V(%) puc pind V(%) puc pind

95% VaR 90% VaR
csl 24 (6.38) 0.237 0.701 33 (8.80) 0.430 0.214
log 23 (6.12) 0.336 0.616 32 (8.53) 0.333 0.171
eqw(1) 24 (6.38) 0.237 0.059 34 (9.07) 0.541 0.085
eqw(2) 23 (6.12) 0.336 0.043 32 (8.53) 0.333 0.047
GARCH N 24 (6.40) 0.232 0.232 34 (9.07) 0.541 0.098
GARCH T 25 (6.65) 0.162 0.080 41 (10.90) 0.564 0.029
GARCH Lap 22 (5.87) 0.453 0.145 33 (8.80) 0.430 0.074
GARCH ST 24 (6.40) 0.232 0.232 33 (8.80) 0.430 0.074
HEAVY N 24 (6.38) 0.237 0.059 33 (8.80) 0.430 0.214
HEAVY T 25 (6.65) 0.162 0.788 41 (10.90) 0.564 0.073
HEAVY Lap 22 (5.85) 0.460 0.144 33 (8.80) 0.430 0.214
HEAVY ST 23 (6.12) 0.336 0.184 33 (8.80) 0.430 0.909
RGARCH N 26 (6.91) 0.106 0.375 32 (8.53) 0.333 0.430
RGARCH T 27 (7.18) 0.068 0.409 33 (8.80) 0.430 0.214
RGARCH Lap 25 (6.65) 0.162 0.312 31 (8.27) 0.250 0.774
RGARCH ST 26 (6.91) 0.106 0.375 31 (8.27) 0.250 0.774
GAS T 24 (6.40) 0.232 0.232 41 (10.90) 0.564 0.029
GAS Lap 21 (5.60) 0.601 0.901 33 (8.80) 0.430 0.192

Nikkei
csl 13 (3.69) 0.239 0.317 21 (5.95) 0.006 0.804
log 14 (3.98) 0.362 0.281 20 (5.67) 0.003 0.890
eqw(1) 12 (3.40) 0.144 0.414 20 (5.67) 0.003 0.432
eqw(2) 11 (3.12) 0.082 0.341 19 (5.38) 0.002 0.979
GARCH N 14 (3.97) 0.356 0.575 24 (6.80) 0.034 0.767
GARCH T 13 (3.68) 0.234 0.492 27 (7.65) 0.126 0.957
GARCH Lap 12 (3.40) 0.144 0.414 24 (6.80) 0.034 0.767
GARCH ST 13 (3.68) 0.234 0.492 26 (7.37) 0.085 0.951
HEAVY N 13 (3.69) 0.239 0.317 21 (5.95) 0.006 0.804
HEAVY T 14 (3.98) 0.362 0.576 24 (6.80) 0.034 0.767
HEAVY Lap 9 (2.56) 0.021 0.491 19 (5.38) 0.002 0.979
HEAVY ST 14 (3.98) 0.362 0.281 21 (5.95) 0.006 0.804
RGARCH N 12 (3.41) 0.147 0.357 18 (5.10) 0.001 0.009
RGARCH T 12 (3.41) 0.147 0.415 19 (5.38) 0.002 0.002
RGARCH Lap 10 (2.84) 0.044 0.275 17 (4.82) 0.000 0.006
RGARCH ST 12 (3.40) 0.144 0.005 17 (4.82) 0.000 0.006
GAS T 21 (5.97) 0.419 0.802 28 (7.93) 0.181 0.590
GAS Lap 11 (3.12) 0.082 0.341 26 (7.37) 0.085 0.431
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implies a violation frequency that is significantly different from 5% (using a significance level

of 5%), while it is not significant using the csl scoring rule. A similar view arises in case

of the DJIA returns, although the csl scoring rule produces still too many violations of the

95% VaR. Nevertheless, the unconditional coverage corresponding with the csl scoring rule

is closer to its nominal value, especially for the 90% VaR estimates (10.85% vs. 11.33%).

Finally, according to the t-statistics, there is no significant difference between the accuracy

of the VaR of both pooling methods, although all numbers are negative.

Third, there is no single model that consistently outperforms our method of combining

density forecasts. Each model fails at least once in the frequency of violations or in the test

of equal accuracy. The best competitors are the HEAVY and RGARCH model classes. The

RGARCH model with Skewed-t distributed errors outperforms the combined approach in

case of the DJIA returns with regards to the frequency of violations, however the uncon-

ditional coverage of 10% is borderline significant in case of the Nikkei data set. Moreover,

using the same data set, the corresponding t-statistics on equal accuracy favour significantly

our combined method.

The differences between our various methods to estimate a VaR become much smaller if

we put attention to the 5-day estimated VaRs, as indicated by Table 5. Using the Bonferroni

bound corresponding with a 5% significance level, we conclude that using the csl scoring

rule or the log scoring rule to obtain weights does not make a clear difference in the VaR

estimates. In addition, the individual models perform also well. This could be explained

partly by the decreasing power of the tests when the number of exceptions decreases. Al-

though there is a gain of using the csl scoring rule over the other pooling methods in case

of 90% 5-day VaR estimates of the daily Nikkei returns, the difference boils down to one

exception.

To summarize, short-horizon VaR estimates improve when using combined density fore-

casts based on the csl score function, either with respect the nominal size and/or with

respect to the statistical accuracy using the asymmetric tick-loss function of (21).
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5 Conclusion

We investigate the benefits of combining density forecasts based on a specific region of

interest. We develop a new density forecast method that combines density forecasts of

different models based on the censored likelihood scoring rule (Diks et al., 2011). Using daily

returns from the S&P 500, DJIA, FTSE and Nikkei stock market indexes from 2000 until

2013, we apply our technique on recently developed univariate volatility models, including

the HEAVY, GAS and Realized GARCH models.

Our results show that density forecasts in the tail are statistically more accurate if one

pools density forecasts using the censored likelihood scoring rule than using density forecasts

based on the log score rule, using the benchmark of equal weights or density forecasts of any

individual volatility model. Second, we show that the 1-day 95% and 90% VaR estimates

improve significantly compared to the benchmark forecasting method or the method based

on the log scoring rule. Moreover, the VaR estimates of each individual is beaten, either

with respect to the nominal frequency of the VaR violations, or with respect to a statistical

test on equal accuracy of the VaR estimates. Our results imply that risk managers and

portfolio managers should not rely on one single model if they are interested in the left tail.

Instead, they should make combinations of density forecasts using the csl scoring rule.
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Appendix

A Optimizing weights

We follow Conflitti et al. (2012) to optimize the weights according tot the log or csl score

function of (3) and (5) respectively. We provide here only an outline of the algorithm.

Define p(yt+1) as the vector of n density forecasts pi(yt+1) = pt+1(yt+1; Yt, Ai) (i =

1, . . . n) of the variable yt+1 at time t over a one-day horizon. The combined density is then

equal to:

p(yt+1) = w
′

p(yt+1) =

n
∑

i=1

wipi(yt+1), (A.1)

with the assumption that the weights are positive and sum to one. For both scoring rules,

we have to maximize the logarithm of the combined (censored) density over a given time

period:14

Φ(w) =
1

T − 1

T−1
∑

t=1

log p(yt+1). (A.2)

Note that we omitted the factor 1
T−1

in this paper. This does not change the result as it

is a constant. Define the (T − 1) × n matrix P̂ with non-negative elements Pti = pi(yt+1).

Now, (A.2) can be rewritten as 1
T−1

∑T−1
t=1 log(Pwt). Denote wopt as the maximum of Φ(w)

subject to the weight constraints. Further, the Lagrange multiplier is introduced to take

into account these constraints:

Φλ(w) =
1

T − 1

T−1
∑

t=1

log(Pwt)− λ

N
∑

i=1

wi. (A.3)

Instead of optimizing (A.3), Conflitti et al. (2012) consider the following “surrogate” func-

14For the log scoring rule, it is indeed the log of the combined density. For the csl scoring rule, it is the
log of the first part (corresponding with the region Bt) or the second part (corresponding with the region
outside Bt) of (5).
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tion, which depends on a vector a of arbitrary weights:

Ψλ(w;a) =
1

T − 1

T−1
∑

t=1

n
∑

i=1

bti log

(

wi

ai

n
∑

l=1

logPtlal

)

− λ
n
∑

i=1

wi. (A.4)

with bti =
Ptiai∑n
l=1

Ptlal
. Further, the function has the properties Ψλ(a;a) = Ψλ(a) for any a

and Ψλ(w;a) ≤ Ψλ(w) for any a and w.

The iterative algorithm is now defined as

w
(k+1)
λ = argmax

w

Ψλ(w;w
(k)
λ ) (A.5)

which yields a monotonic increase of Ψλ, according to the two aforementioned properties.

Setting the derivatives of Ψλ(w;w
(k)
λ ) with respect to wi equal to zero leads to the maximum

wλ,i = (1/λ)
∑T−1

t=1 bti. Using the constraint that the weights should sum up to one, it holds

that λ = T − 1. This changes (A.5) into

w
(k+1)
i = w

(k)
i

1

T − 1

T−1
∑

t=1

Pti
∑n

l=1 Ptlw
(k)
l

(A.6)

where we replace ai by w
(k)
i in the expression of bti. We start the algorithm with equal

weights, that is wi0 = 1/n and use as a stopping criterion a tolerance of 1e−6 of the sum of

the absolute deviation of two successive iterates.
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B Pooling results of the log score function

Figure B.1: Pooling weights of the S&P 500, FTSE and Nikkei index
This figure depicts the evolution of weights based on optimizing the logarithmic score function (left part) of
(3) or the csl score function (right part) of (5) with a moving window of T = 750 one-step ahead evaluated
density forecasts using daily returns of the S&P500, FTSE and Nikkei indexes. In case of the csl score
function, Bt the left tail yt < r̂0.25 with r̂0.25 the 0.25th quantile of the empirical CDF of the in-sample
returns. The labels refer to the models that have the highest weight at a given period. The abbreviations
“ST”, “Lap” and “N” stand for Skewed-t, Laplace and Normal respectively.
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Table B.1: Evaluation of 1- and 5-day ahead censored density forecasts based

on the log scoring rule
This table reports results of testing equal predictive accuracy using the censored likelihood scoring rule of
(4), with Bt the left tail yt < r̂κ with r̂κ the κth quantile of the empirical CDF of the in-sample returns.
We set κ equal to 0.15 and 0.25 respectively. The weights are repeatedly optimized based on a the log score
function of (3), using a moving window of 750 evaluated density forecasts. We focus on 1- and 5-step ahead
density forecasts. The test statistic is given in (18) and compares censored density forecast with weights
based on the log score function and density forecasts of each competing model, which are listed in Table
1. All models are estimated with a moving window of 750 daily returns from the S&P500, DJIA, FTSE
and Nikkei index through the period January, 2000 - June, 2013. The test statistics are based on HAC-
based standard errors and 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei) out-of-sample
observations respectively.

Pooled (log score function) vs. individual
S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei

1-step ahead forecasts 5-step ahead forecasts
κ = 0.15

GARCH N 0.70 0.64 4.12∗∗∗ 1.86∗ 0.80 0.73 3.71∗∗∗ 1.82∗

GARCH T −0.78 −0.86 4.15∗∗∗ 0.35 −1.63 −1.50 4.44∗∗∗ −0.63
GARCH Lap −1.59 −1.71∗ 4.38∗∗∗ 0.11 −2.42∗∗ −2.20∗∗ 4.64∗∗∗ −0.92
GARCH ST 6.34∗∗∗ 5.12∗∗∗ 3.37∗∗∗ 3.37∗∗∗ 5.85∗∗∗ 4.98∗∗∗ 3.18∗∗∗ 3.31∗∗∗

HEAVY N −0.78 −0.63 3.03∗∗∗ 0.99 −0.19 −0.40 3.62∗∗∗ 1.38
HEAVY T −2.05∗∗ −2.00∗∗ 2.85∗∗∗ −1.80∗ −2.27∗∗ −2.12∗∗ 3.95∗∗∗ 0.07
HEAVY Lap −2.75∗∗∗ −2.73∗∗∗ 3.34∗∗∗ −1.50 −3.25∗∗∗ −2.90∗∗∗ 3.98∗∗∗ −1.64
HEAVY ST 5.92∗∗∗ 4.90∗∗∗ −0.31 2.86∗∗∗ 5.39∗∗∗ 4.65∗∗∗ 0.79 2.62∗∗∗

RGARCH N −1.11 −1.30 3.45∗∗∗ 2.07∗∗ 1.01 0.84 5.54∗∗∗ 3.45∗∗∗

RGARCH T −2.06∗∗ −2.08∗∗ 3.23∗∗∗ 0.22 −0.77 −0.21 5.53∗∗∗ 2.32∗∗

RGARCH Lap −2.42∗∗ −2.37∗∗ 3.54∗∗∗ 1.64 −1.60 −1.17 5.35∗∗∗ 2.41∗∗

RGARCH ST 5.39∗∗∗ 4.27∗∗∗ −0.64 5.08∗∗∗ 7.18∗∗∗ 8.19∗∗∗ 2.08∗∗ 6.01∗∗∗

GAS T −0.66 −0.90 4.20∗∗∗ 0.64 −1.50 −1.47 4.50∗∗∗ 0.29
GAS Lap −1.59 −1.67∗ 4.37∗∗∗ 0.19 −2.42∗∗ −2.21∗∗ 4.67∗∗∗ −1.03

κ = 0.25
GARCH N 1.84∗ 1.76∗ 5.97∗∗∗ 2.33∗∗ 1.44 1.34 5.00∗∗∗ 2.02∗∗

GARCH T 0.72 0.72 5.95∗∗∗ 2.04∗∗ −0.51 −0.45 5.98∗∗∗ 0.86
GARCH Lap −0.26 −0.24 5.49∗∗∗ 1.96∗ −1.48 −1.22 5.46∗∗∗ 0.38
GARCH ST 6.06∗∗∗ 5.21∗∗∗ 3.52∗∗∗ 3.11∗∗∗ 5.36∗∗∗ 4.78∗∗∗ 3.32∗∗∗ 2.87∗∗∗

HEAVY N 0.47 0.62 5.21∗∗∗ 1.35 0.81 0.69 5.21∗∗∗ 1.56
HEAVY T −0.56 −0.22 4.87∗∗∗ 0.23 −0.91 −0.62 5.74∗∗∗ 0.97
HEAVY Lap −1.46 −1.16 4.54∗∗∗ 0.38 −2.21∗∗ −1.66∗ 4.93∗∗∗ −0.27
HEAVY ST 5.11∗∗∗ 4.17∗∗∗ −1.46 2.03∗∗ 5.03∗∗∗ 3.92∗∗∗ 0.07 2.44∗∗

RGARCH N 0.56 0.45 5.69∗∗∗ 2.70∗∗∗ 2.37∗∗ 2.12∗∗ 7.26∗∗∗ 3.82∗∗∗

RGARCH T −0.22 −0.33 5.26∗∗∗ 2.02∗∗ 0.96 1.18 7.25∗∗∗ 3.18∗∗∗

RGARCH Lap −1.11 −1.08 4.73∗∗∗ 2.99∗∗∗ −0.58 −0.25 6.08∗∗∗ 3.12∗∗∗

RGARCH ST 6.18∗∗∗ 5.58∗∗∗ −1.05 7.26∗∗∗ 9.38∗∗∗ 9.89∗∗∗ 2.82∗∗∗ 8.25∗∗∗

GAS T 0.74 0.63 6.00∗∗∗ 2.13∗∗ −0.43 −0.47 6.06∗∗∗ 1.50
GAS Lap −0.32 −0.25 5.46∗∗∗ 2.07∗∗ −1.52 −1.28 5.48∗∗∗ 0.41
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Table B.2: Log scores
This table reports log scores corresponding with individual models and combined models, where the weights
are based on optimizing the log score function of (3). The weights are repeatedly optimized based on a
moving window of 750 evaluated density forecasts. The bold numbers represent the maximum of all models
per data set. All models are estimated with a moving window of 750 daily returns from the S&P500, DJIA,
FTSE and Nikkei index through the period January, 2000 - June, 2013. The number of out-of-sample
observations are equal to 1864 (S&P 500), 1866 (DJIA), 1882(FTSE) and 1766 (Nikkei)respectively.

S&P500 DJIA FTSE Nikkei S&P500 DJIA FTSE Nikkei
1-step ahead forecasts 5-step ahead forecasts

GARCH N -2687 -2609 -2338 -2500 -2735 -2648 -2400 -2642
GARCH T -2651 -2574 -2314 -2434 -2673 -2588 -2348 -2491
GARCH Lap -2642 -2568 -2338 -2454 -2662 -2584 -2364 -2499
GARCH ST -2653 -2507 -1948 -2377 -2711 -2564 -2017 -2480
HEAVY N -2622 -2552 -2269 -2459 -2698 -2611 -2350 -2603
HEAVY T -2603 -2533 -2263 -2399 -2660 -2578 -2321 -2490
HEAVY Lap -2603 -2535 -2309 -2430 -2646 -2572 -2348 -2483
HEAVY ST -2542 -2402 -1812 -2301 -2683 -2518 -1907 -2466

RGARCH N -2636 -2564 -2281 -2517 -2780 -2691 -2420 -2742
RGARCH T -2622 -2549 -2276 -2453 -2728 -2647 -2373 -2584
RGARCH Lap -2619 -2546 -2315 -2493 -2703 -2627 -2384 -2598
RGARCH ST -2634 -2541 -1853 -2671 -2898 -2802 -2065 -2987
GAS T -2655 -2573 -2317 -2439 -2678 -2591 -2353 -2495
GAS Lap -2643 -2567 -2339 -2457 -2662 -2582 -2366 -2494
pooled log -2488 -2374 -1867 -2310 -2601 -2472 -1959 -2412
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