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1 Introduction

In this paper, we examine the aggregate and distributional effects of capital income taxation when
capital income can experience sudden surges. By examining 100 of richest Americans listed in
the Forbes magazine, Graham (2021) argues that “[b]y 2020 the biggest source of new wealth was
what are sometimes called ‘tech’ companies. Of the 73 new fortunes, about 30 derive from such
companies. These are particularly common among the richest of the rich: 8 of the top 10 fortunes
in 2020 were new fortunes of this type.” Halvorsen, Hubmer, Ozkan, and Salgado (2023) study the
Norwegian administrative data and find that at least a quarter of wealthiest people start with debt
but experience rapid wealth growth early in life. Given the importance of capital income surges in
shaping wealth inequality, it is crucial to understand the effects of taxes on normal capital income
and on sudden capital income surges.

Building on the model of Benhabib, Cui, and Miao (2024, BCM thereafter), we introduce
progressive capital taxes and fiscal policy. BCM provide a tractable general-equilibrium model
that accounts for the US distributions of earnings and wealth since 2000 with a focus on how
sudden new fortunes generated from investment affect the aggregate and the wealth distribution.
By contrast, our focus is to compare the aggregate and distributional effects of flat capital taxes
with those of progressive capital taxes.

Like the BCM model, our model departs from the standard Bewley-Huggett-Aiyagari (BHA)
model by introducing two key ingredients.1 First, the model separates illiquid capital assets (which
incur maintenance costs) from liquid safe assets (bonds) similar to Kaplan, Moll, and Violante
(2018). Second, the model introduces idiosyncratic investment risks in the form of Poisson jumps
of capital income, which apply only to new capital investments, but not to the rate of return on
capital already in place. At each point in time, each household has a chance of investing in a risky
project or conducting innovations/R&D. Such activities arrive as rare events and may generate
large random capital income. These jumps are critical to account for the top wealth shares.2 We
adopt the hyper-exponential distribution (HED) specification for the jump size of entrepreneurial
capital income because it allows us to get analytic solutions to compute the stationary equilibrium
tractably.

1As is well known (e.g., Benhabib and Bisin (2018) and Stachurski and Toda (2019)), a standard BHA model with
infinitely-lived agents facing idiosyncratic labor income risks alone generates a counterfactual result that the tail thick-
ness of the model output (wealth) cannot exceed that of the input (income). The reason is that usually precautionary
savings compresses the input distribution. By contrast, the capital income jump risks influence precautionary savings
in a different way than labor income risks, and therefore our model can generate a thicker tailed wealth distribution
than the labor income distribution.

2This feature is consistent with the wealth accumulation of some richest Americans in recent years as mentioned
before. Another feature is that the wealth distribution converges quickly since there are always some (albeit very few)
people who experience this large jumps. In our simulation, the wealth distribution already converges after 15 years in
the model.
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A nice feature of our model is that it can be applied to study the impact of taxing capital
income jumps as progressive capital taxation, in addition to the traditional flat taxes on all capital
income.3 We demonstrate two effects of capital taxation, whether it is flat or progressive. First,
following BCM, the economy has a stationary equilibrium where the interest rate is lower than the
subjective discount rate, as described by Aiyagari (1994). In this equilibrium, prices and aggregate
quantities are determined independently of the full wealth distribution, as only its mean affects the
aggregate variables. Notably, increasing the capital tax reduces both capital demand and aggregate
saving incentives, leading to a lower capital level. As a result, the interest rate rises under plausible
parameters, which reduces the marginal propensity to consume. Second, as the marginal propensity
to consume decreases with higher capital taxes, everyone, including poorer households, borrows
less or save more, driving wealth inequality in either direction.

In the presence of capital income jumps, the flat-rate capital taxation can increase the skewness
and kurtosis of the wealth distribution relative to the labor income distribution. By contrast, with
progressive capital taxation, taxing capital income jumps can reduce the relative skewness and
kurtosis due to the effect of precautionary savings. Thus, the extent of capital income surges
significantly influence how capital tax shapes wealth inequality relative to labor income inequality.

To further examine the quantitative implications of capital taxation, we calibrate our model to
confront with the US data. We choose parameter values to match the US micro and macro data,
and especially statistics related to the wealth and labor income distributions. The estimated labor
income process (with only three parameters) turns out to match the distribution of income growth
obtained from the census data closely. Finally, the separation between elasticity of intertemporal
substitution (EIS) and risk aversion in agents’ utility is important not only for understanding pre-
cautionary saving (Weil (1993)), but also for generating a large, realistic marginal propensity to
consume (MPC) as in the data.4 This feature is critical for the existence of a stationary equilibrium
and also for matching the data. Quantitatively, by specifying two mixed exponential components
for the HED, we find that our calibrated model can match the wealth distribution in the data closely.
In particular, we match the wealth shares held by the top 0.1% and 1%.

We find that the impact on wealth inequality depends crucially on how tax revenues are dis-
tributed. When tax revenues are transferred to all households evenly, such a policy raises wealth
inequality. But when tax revenues are used to finance more government bonds that provide liquid-
ity for precautionary savings, such a policy reduces wealth inequality. This aspect is similar to the
beneficial effect of public liquidity provision identified in previous studies, such as Aiyagari and
McGrattan (1998), Angeletos, Collard, and Dellas (2020), Bayer, Born, and Luetticke (2023), and

3In practice, taxing capital income jumps can be implemented as capital gain taxes.
4See Kaplan and Violante (2021) for the impact of recursive utility on the MPC in the discrete-time BHA frame-

work.
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Bassetto and Cui (2023).
Additionally, a novel quantitative finding is that taxing the jump part of capital income, similar

to progressive capital taxation, has less distortion in investment efficiency, compared to taxing all
capital come at a flat rate. That is, given the same amount of tax revenues, progressive capital
taxation generates less output loss than flat capital taxation does. This result comes from the
fact that the investment incentive is insensitive to the variation of the jump return because it is
still extremely high even with, e.g., 20% tax on it and the jump income occurs with a very small
probability anyway. This new result can add new perspective to the current debate of wealth
taxation. Taxing total wealth is akin to taxing all components of capital income. Our model
indicates that taxing the jump component of capital income can reduce inequality while being less
distortionary, so it could be a better solution.

Related literature. Our paper builds on the BCM model, which contributes to the macroeco-
nomics literature on wealth inequality in the tradition of the BHA model.5 The advantage of using
the BCM framework lies in its recursive utility specification and the novel addition of capital
income jumps, which allow us to generate realistic marginal propensity to consume (MPC) and re-
alistic income and wealth distributions, as observed in the data. For instance, the model can match
the wealth share of the top 0.1%. Thus, the capital taxation results highlighted in this paper have
not only qualitative insights but also quantitative implications.

In our paper, taxing capital in the presence of capital income surges behaves differently than in
a scenario where random returns to wealth generate a Pareto tail as in Benhabib et al. (2011). The
relationship between wealth inequality and labor income inequality can be non-monotonic with
respect to capital taxation when capital income jumps are present. In addition, we demonstrate that
simple transfer policies can actually increase inequality, similar to Kaymak and Poschke (2016).
We highlight the significance of debt management alongside progressive capital taxation to achieve
efficiency and reduce inequality. This complements the research on progressive income taxation in
macroeconomic models with uninsurable, idiosyncratic productivity shocks, such as the studies by
Conesa and Krueger (2006), Bakis et al. (2015), and Heathcote et al. (2017). Also, previous work,
such as by Panousi (2015), studies capital taxation in terms of redistribution under investment risk.
Our model highlights the benefit of progressive capital taxation under jump investment risk.

In an overlapping-generations setting, Conesa, Kitao, and Krueger (2009) do not find progres-
sive capital taxation is needed when labor income tax is progressive. The benefit of progressive
capital tax in our model comes from the presence of sudden capital income, although our policy
analysis is positive in nature. The benefit of taxing sudden capital income shares have similar fea-

5See Heathcote, Storesletten, and Violante (2009), Guvenen (2011), Quadrini and Rios-Rull (2015), Krueger,
Mitman, and Perri (2015), and Benhabib and Bisin (2018) for recent surveys.
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tures of taxing the top 1% labor income, as discussed by Kindermann and Kruger (2022). They
show that to match the high concentration of labor earnings and wealth, their model requires that
households occasionally have opportunities to earn very high wages through, e.g., attractive but
rare entrepreneurial activities. These households’ labor supply is insensitive to high marginal tax
rates (close to 80%) as long as they have not yet accumulated substantial wealth. A strong negative
income effect on leisure keeps these households working hard even with high taxes. Similarly, in
our model, capital demand is insensitive to raising the tax rate on the jump component, as it occurs
infrequently.

2 Model

We extend the BCM model by introducing progressive capital income taxation. We briefly intro-
duce the model setup and refer the reader to BCM for a more detailed presentation.

2.1 Preferences

There is a continuum of infinitely-lived households, indexed by i and distributed uniformly over
[0, 1]. All households have the same recursive utility over consumption in continuous time (Duffie
and Epstein (1992)). For simplicity, we omit the household specific index i.

Let dt denote the time increment. It helps intuition much better by motivating such utility as
the limit of a discrete-time model (Epstein and Zin (1989)) as the time interval shrinks to zero.6

The continuation utility Ut at time t over a consumption process {ct}t≥0 satisfies the following
recursion:

f(Ut) = f (ct) dt+ exp (−βdt) f (Rt (Ut+dt)) , (1)

where β > 0 denotes the rate of time preference, f denotes a strictly increasing time aggregator
function, and Rt denotes a conditional certainty equivalent. Notice that Ut is ordinally equivalent
to f (Ut) for a strictly increasing function f.

We adopt the specification of Weil (1993):

f (c) =
c1−1/ψ

1− 1/ψ
, Rt (Ut+dt) = u−1Etu (Ut+dt) , u (Ut+dt) =

− exp (−γUt+dt)
γ

, (2)

where γ > 0 is the coefficient of absolute risk aversion and ψ > 0 (ψ ̸= 1) is the EIS parameter.
The specification of f in (2) implies that consumption can never be negative.7

6See Caldara et al (2012) for a comparison of different solution methods for computing the equilibrium of dynamic
stochastic general equilibrium models with recursive preferences.

7Moreover, the CARA specification of u allows the consumption/saving problem with additive labor income risk
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2.2 Decision Problem

At each time t ≥ 0, each household is endowed with one unit of labor. It owns and runs a
private firm, which employs labor supplied by other households in the competitive labor market
but can only use the capital stock invested by the particular household. Each household faces two
independent sources of idiosyncratic shocks that hit its private firm and its earnings. It can only
trade riskless bonds and cannot fully diversify away idiosyncratic shocks. We focus on a stationary
economy in which all aggregate (per capita) quantities and prices (wage and interest rate) are
constant over time. The government imposes a tax rate τk on the base including capital and bonds
and a tax rate τℓ on labor income. Besides, it can impose a tax when capital jump income is realized
(see below).

Let the (normal) production function take the form

yt = Akαt l
1−α
t , α ∈ (0, 1) ,

where A represents TFP, yt, kt, and lt denote output, capital, and labor, respectively. Let w and Rk

denote the after-tax wage rate and capital return, and δ > 0 denotes the depreciation rate. Profit
maximization implies

Rkkt = (1−τk)max
lt

{
Akαt l

1−α
t − w

1− τℓ
lt−δkt

}
= (1−τk)

[
αA

(
(1− α)A

w/(1− τℓ)

) 1−α
α

− δ

]
kt. (3)

The household faces idiosyncratic investment risk and labor income (earnings) risk. The effec-
tive market hours are represented by the process (ℓt), which is governed by the dynamics

dℓt = ρℓ (L− ℓt) dt+ σℓ
√
ℓtdW

ℓ
t , (4)

where W ℓ
t is a standard Brownian motion and σℓ, ρℓ > 0. This is the square-root process modeled

in Cox et al. (1985). One can interpret ℓt as the product of labor hours and idiosyncratic labor
productivity. To ensure ℓt is positive, we assume that 2ρℓL ≥ σ2

ℓ .
Besides, the capital income is hit by a jump shock dJt, where Jt is a jump process. For each

realized jump, the jump size q is drawn from a fixed probability distribution ν over [0,∞). Assume
that all shocks are independent of each other and across households. For notation simplicity, q
already takes into account the capital income taxation. The before-tax jump size will be specified
later.

to admit a closed-form solution (Weil (1993)). Angeletos and Calvet (2006) also consider CARA specification for
u, but they assume that f (c) = −ψ exp (−c/ψ) is an exponential function. This specification implies that optimal
consumption can be negative and cannot generate a stationary wealth distribution.
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Suppose that the intensity at which a jump occurs depends upon kt and is given by λt = λkkt,

where λk > 0. Intuitively, during any time interval [t, t+ dt] , the household receives an average
capital income λkktEν [q] dt. The interpretation is that there is a rare event that the new investment
earns a large return and the success probability is positively related to the capital stock. Such a
return represents additional output from entrepreneurial risk-taking activities like innovations or
R&D.

We specify the jump size distribution ν explicitly as a hyper-exponential distribution (HED),
which is a weighted average of n exponential distributions with nonnegative weights. This type
of distributions is flexible and can approximate any completely monotone distributions (Feldmann
and Whitt (1998) and Cai and Kou (2011)).8 BCM find that the HED specification is useful to
generate realistic wealth distribution. In this paper, this specification brings new implication for
capital tax policy thanks to its simple analytical moment generating function (to be used in the
household’s problem). The PDF for the HED can be written as

f (q) =
n∑
j=1

pj
exp (−q/µj)

µj
, q > 0, (5)

where pj ∈ [0, 1] , µj > 0, and
∑n

j=1 pj = 1.An interpretation is that given an arrival of innovation,
a fraction of pj households draw capital income jumps from the exponential distribution with mean
µj. For notation consistency, µj is the after-tax variable. Suppose the government can levy tax on
the income jump by a rate τJ . Then, the pre-tax mean µ̃j = µj/[(1 − τk)(1 − τJ)] for each
component.

Capital assets are illiquid and owning kt of them incurs maintenance costs given by ηk2t /2 +
χkt per unit of time, where η > 0 and χ > 0 are parameters. The household can also trade
riskless bonds at the after-tax interest rate r to insure against idiosyncratic shocks. Let bt denote
the household’s holding of bonds. Households can borrow and lend among themselves without any
trading frictions so that bt < 0 represents borrowing. To deliver a closed-form solution, we do not
impose binding borrowing constraints, but a transversality condition on the value function must be
satisfied to rule out Ponzi schemes (e.g., Merton (1971)). Let xt = bt + kt denote the household’s
wealth level. Then the entrepreneurial profits πt follow dynamics

dπt = Rkktdt−
(
χkt +

η

2
k2t

)
dt+ dJt.

8Cai and Kou (2011) also study more general mixed-exponential distribution (MED) with possibly negative
weights. The MED can approximate any distribution arbitrarily closely (Botta and Harris (1986)). Cai and Kou
(2011) show that HED or MED for the jump size is useful for computing option prices given fat-tailed stock returns.
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The household faces the following dynamic budget constraints

dxt = rbtdt+ dπt + wℓtdt− ctdt+Υdt

= rxtdt+
(
Rk − χ− r

)
ktdt−

η

2
k2t dt+ dJt + wℓtdt− ctdt+Υdt. (6)

where Υ represents per capita government transfers (or lump-sum taxes if Υ < 0). The household
problem is to choose consumption and capital investment processes (ct, kt)t≥0 to maximize utility
U
(
{ct}t≥0

)
subject to the budget constraints (6), given initial wealth x0 = x and initial labor

ℓ0 = ℓ. Let V (x, ℓ) denote the value function.
Suppose that 0 < r < β (which will be the case in equilibrium), using BCM’s dynamic

programming result, we know that value function takes the form

V (xt, ℓt) = θ (xt + ξℓℓt + ξ0) ,

where θ, ξℓ, and ξ0 are given by
θ = [ψ (β − r) + r]

1
1−ψ , (7)

ξℓ =
− (ρℓ + r) +

√
(ρℓ + r)2 + 2σ2

ℓ θγw

θγσ2
ℓ

> 0, (8)

ξ0 =
1

r

{
ηk − η

2
k2 +Υ+ ξℓρℓL

}
. (9)

Then the optimal consumption rule and capital demand (after using the HED specification) are
given by

ct = θ1−ψ (xt + ξℓℓt + ξ0) , (10)

kt = k ≡ 1

η

(
Rk − χ− r + λk

∑
j

pj

µ−1
j + γθ

)
, (11)

To understand the consumption rule in (10), we need to introduce the concept of human wealth,
which is defined as the (after-tax) expected present value of future labor income. For our incom-
plete markets model with uninsured risk, there is no unique stochastic discount factor used to
discount future labor income. The literature typically uses the interest rate r > 0 as the discount
rate. Formally, we define human wealth as

ht ≡ Et
[∫ ∞

t

e−r(s−t)wℓsds

]
=

w

r + ρℓ

(
ℓt +

ρℓL

r

)
. (12)
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Then we can rewrite (10) as
ct = ϑ (xt + ahht + Γ) , (13)

where we define
ϑ ≡ ψ (β − r) + r > 0 (14)

ah ≡
(r + ρℓ) ξℓ

w
∈ (0, 1) , (15)

Γ ≡ ηk2

2r
+

Υ

r
. (16)

The moment-generating function of HED simplifies the derivation.9 The variable ϑ represents
the marginal propensity to consume (MPC), which is important to understand the consumption
behavior and the wealth distribution. The assumption of 0 < r < β ensures that the MPC is
positive. which also shows that the MPC increases with the EIS parameter ψ. This assumption
will be satisfied in general equilibrium. As is well known, the MPC is equal to r in the standard
time-additive CARA utility model (e.g., Caballero (1990) and Wang (2007)) without financing
constraints. Importantly, recursive utility in our model helps generate a MPC higher than r. Finally,
the consumption rule is linear in wealth and it is important for aggregation and useful to analyze
wealth distribution and stationary equilibrium.

2.3 Government

Let G be the exogenous constant government expenditure. The government has an exogenous
fixed bond supply B at each time. The residual Υ is used as lump-sum transfer. When Υ < 0, it
becomes lump-sum tax. In a stationary equilibrium, the government budget constraint is given by

G+Υ+ rB =
τk

1− τk

(
Rk +

τJ
1− τJ

λk
∑
j

pjE[qj]

)
K +

τℓ
1− τℓ

wL, (17)

whereK denotes aggregate capital stock and qj is the stochastic jump size conditioning on drawing
jth component. As mentioned above, the government tax capital and labor income at the flat rates
τk and τℓ, respectively. The government also tax additional capital jump income at the rate τJ .

9HED’s moment generating function

Eν exp (tq) =

n∑
j=1

pj
1− µjt

, for t < min
j

{1/µj}.
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2.4 Stationary Equilibrium

We now add household-specific index i and conduct aggregation. Aggregate consumption, labor,
capital, wealth, and output are given by

Ct ≡
∫
citdi, L ≡

∫
ℓitdi, Kt ≡

∫
kitdi, Xt ≡

∫
xitdi,

Yt ≡
∫
yitdi+ λk

∑
j

pjE[qj]
(1− τJ) (1− τk)

= AKα
t L

1−α + λk
∑
j

pjE[qj]
(1− τJ) (1− τk)

.

Aggregate output Yt consists of two components: total output generated by firm production
∫
yitdi

and extra output generated by business risk taking. After aggregation, we are ready to define
equilibrium in the steady state.

Definition. Given constant government policy (G,B, τk, τℓ, τJ), a stationary competitive equilib-
rium consists of constant wagew and interest rate r, individual choices {cit, kit, lit}t≥0 for i ∈ [0, 1] ,

a transfer policy Υ, and constant aggregate quantities C, Y, and K, such that (i) given (w, r) , the

processes {cit, kit, lit}t≥0 are optimal choices for each household i; (ii) the bond, capital, and labor

markets all clear ∫
bitdi = B, X = K +B,

∫
litdi = L,

and (iii) finally the government budget (17) holds.

By (13), aggregate consumption is given by

C = ϑ (K +B + ahH + Γ) , (18)

where Γ is defined in (16) with k = K and we use (12) to derive aggregate human wealth as

H ≡
∫
hitdi =

wL

r
. (19)

According to the constant-returns-to-scale technology in (3), we can show that the capital/labor
ratio is identical for all households. Thus we have

Rk = (1− τk)[αAK
α−1L1−α − δ], (20)

w = (1− τℓ) (1− α)AKαL−α, (21)

and AKαL1−α =
∫
yitdi. We can also derive the resource constraint

C +G+ δK +
η

2
K2 + χK = Y, (22)
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where Y is aggregate output in stationary equilibrium.

3 Calibration

In this section we calibrate our model and examine its quantitative implications for the aggregate
economy and for the income and wealth distributions. We solve for the stationary equilibrium
numerically and suppose that one unit of time in our model corresponds to one year.

Both capital tax and labor income tax rates are set to τk = τℓ = 0.25, so that the government
collects 25% of output as tax revenues. We have experimented with different tax rates, and after
recalibration the distributional statistics below are similar. The tax rate on jump income τJ is set
to zero in the benchmark. The rest of parameter choices follows BCM.

Table 1: Calibrated Parameter Values

Value Explanation/Target Value Explanation/Target
β 0.1417 MPC = 0.20 B 1.6101 B/Y = 0.81
γ 4.100 relative risk aversion 5 G 0.3777 G/Y = 0.19
ψ 1.5 EIS µ̃2 414.54 top 0.1% wealth share
α 0.3300 capital share µ̃1 0.1050 top 20% wealth share
δ 0.1251 I/Y = 0.16 p2 0.0048 average innovation return 14%
A 1.3120 w = 1 p1 0.9952 1− p2
L 0.8000 estimated η 0.0049 Rk − r = 3.0%
ρℓ 0.0030 estimated χ 0.0175 interest rate r = 2.5%
σℓ 0.1097 estimated λk 0.0500 innovation probability

τℓ = τk 0.25 average tax rate τJ 0 benchmark

Consider {α, δ, ψ, χ, η, β, γ, A,G,B} . We set the capital share α = 0.33 as in the macro
literature. Set the depreciation rate δ = 12.5% to target 16% investment to output ratio in the US
data. We set the EIS parameter ψ = 1.5 in line with the finance literature on long-run risk, and
later we conduct a sensitivity analysis with respect to ψ. Set the linear maintenance cost parameter
χ, the quadratic maintenance cost parameter η, the subjective discount rate β, and the CARA
parameter γ to target the following equilibrium variables: the interest rate r = 2.5% in line with
real return of government bonds,10 the return premium Rk− r = 4%,11 the MPC ϑ = 0.20 by (14),

10We use the average returns of 1 year Treasury and long-term treasury between 2000 and 2020. The result is
robust if we target different maturities, and the target interest rate r is in the range of 2% to 3%.

11The premium Rk − r cannot be large relative to the interest rate. One reason for this premium is liquidity
premium (because of adjustment costs of capital), which can be approximated by the average of the spread between
AAA corporate bonds and treasuries of similar maturity, which is roughly 1% after 1984 (see Krishnurmuthy and
Vissing Jorgensen (2012), Del Negro et al. (2017), and Cui and Radde (2020)). Further, the private equity premium is
around 2% according to Angeletos (2007) for compensating idiosyncratic risks.
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in line with most of OECD aggregate MPC measures (Carroll, Slacalek, and Tokuoka (2014)), and
the coefficient of relative risk aversion γC = 5, where C is the aggregate consumption level in the
stationary equilibrium. We normalize the steady-state (after-tax) wage rate to one by adjusting the
TFP parameter A.

Government spending G is set so that the government expenditure to output ratio is 19% in
line with the data. The debt to output ratio is 81%. These are obtained as the averages between
2000 and 2019, which will be used for our distributional statistics discussed later as well. Since
the model does not feature borrowing constraints and the government has the lump-sum tax instru-
ment, calibrating government debt to different levels has no aggregate consequence because of the
Ricardian equivalence discussed previously.

Next, BCM obtain the three parameters L, ρℓ, and σℓ in (4) by simulated method of moments
(SMM). The SMM targets important moments in the social-security administrative (SSA) data an-
alyzed by Guvenen et.al. (2021).12 The SMM procedure uses the standard deviation, the skewness,
as well as the fraction of earning changes less than 5%, 10%, and 20%.

Finally, we consider the remaining parameters in Table 1 that govern the jump process. The
jump intensity parameter λk is set to 5%, and given the equilibrium capital stock K, the annual
probability λkK of an innovation or R&D is 12.4%. It should be noted that our model allows for
both success and failure of innovations or R&D, because the jump returns may not be enough to
compensate the loss arising from adjustment costs. This can happen if the jump size is close to
zero. We acknowledge that the success probability varies across different sectors and industries.
For example in the pharmaceutical industry, the success probability ranges from 4% to 15% across
different development stages.13

We choose values of µ1, µ2, and p1 (note p2 = 1 − p1) to target three statistics: 14% of the
average pre-tax private returns to innovations and/or R&D (i.e., λkEν [q] /(1 − τk) in the model),
and top 0.1% and 20% wealth shares in the US data. Griffith (2000) estimates the private returns
ranging from 14% to 20% in the US. The public return can be even higher. Our target of 14%
for the private return is conservative. Using administrative tax data, Smith, Zidar, and Zwick
(2021) estimate that the top 0.1% wealth shares increased from 9.9% in 1989 to 15% in 2016.
They also show that the most recent estimates from several approaches in the literature tell starkly
different stories about the level and evolution of these wealth shares. We choose 15% in 2016 as

12As illustrated by Guvenen et. al. (2021), SSA and contains information for every US individual who was ever
issued a Social Security number. Basic demographic variables, such as date of birth, place of birth, sex, and race, are
available along with several other variables. The earnings data are derived from the employee W-2 forms, which U.S.
employers have been legally required to send to the SSA since 1978. The measure of labor earnings is annual and
includes all wages and salaries, bonuses, and exercised stock options as reported on the W-2 form (Box 1).

13Therefore, we experiment with different success probability, and recalibrate parameters. We find that the model
implication for the wealth distribution statistics does not change significantly, which is consistent with the discussion
above about the analytical features of the tails.
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Figure 1: Example HED Probability Density Function

our target for the top 0.1% wealth shares. We also choose the top 20% wealth share, which is
79.8% according to the average from the Survey of Consumer Finance after 2000.

To understand better the power of HED, Figure 1 shows the comparison of the probability
density functions of an example HED and its two components. For illustration purpose, we set
µ1 = 0.1, µ2 = 10, p1 = 0.9, and p2 = 0.1. So, the first component of the HED has a mean
that is close to zero, but it occurs with 90%; the second component has a large mean, but it occurs
with only 10%. Notice that the HED has a PDF that is very close to that of the first, the most
likely component. However, the second component helps the HED to capture the far right tail. As
a result, the HED offers flexibility in quantitative analysis because the first component can assist
the model in capturing most part of the wealth distribution, while the second part is crucial for the
right tail. This feature may explain why using other types of input distribution for the jump size
leads to substantial worse quantitative performance. For example, we have tried input distributions
including Gamma, Weilbull, and even Pareto, which are supposed to capture the right tail well.
Also, notice that a single exponential distribution requires only one parameter, so a mixture of
other distributions, instead of exponentials as in the HED, will need many more parameters.

Note that to compute the wealth shares in our model, we run 100 simulations and compute
the average. For each simulation, we discretize the equilibrium wealth process xt (26). The time
increment represents one week. In the end, we run 100 simulations of the wealth process xt, each
simulation having 15 years and 52 weeks per year and 100,000 people. Increasing simulation
length and/or the number of people does not change our results significantly. In (26), important
parameters that govern the wealth distributions are µx = −0.1546, ρx = 0.1750, and ϕ = 0.7540

according to our calibration.
Targeting the top 0.1% showcases the model’s ability to match the right tail of the distribution,

and targeting the top 20% illustrates the model’s ability to capture the general features of inequality
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(e.g., the conventional view of 80-20 rule). Our model turns out to match non-targeted statistics
well. For example, according to the average between 2000 and 2019 obtained from the distribu-
tional financial account of Federal Reserve Board, the top 1% and 10% wealth shares are 31.5%
and 66.7%, respectively. The corresponding model statistics are 32.2% and 62.7%. Our model
generates about 1.5% wealth share for the bottom 50%, slightly below the data 1.7%. Our model
also generates 33.7% wealth share for the top 50% to 10%, slightly larger than the data 32%. This
discrepancy is expected, as agents in our model do not face borrowing constraints. The model’s
wealth Gini coefficient is 0.77, slightly below the observed 0.80, partly due to some households
in the simulation being in debt and not receiving government transfers.14 Notably, about 26% of
people have negative wealth in the model, although none experience negative consumption.

4 Effects of Capital Taxes

In this section we study the effects of capital taxes on the aggregate economy and the wealth
distribution.

4.1 Aggregate Investment and Saving

In this subsection, we use the asset/investment demand and supply analysis of Aiyagari (1994) to
understand the aggregate equilibrium determination.

We first derive the aggregate investment demand curve. Combining equations (11) and (20)
yields

(1− τk)(α(K/L)
α−1 − δ)− χ = ηK + r + λk

∑
j

pj

µ̃−1
j (1− τk)(1− τJ) + γθ

(23)

Because θ is a function of r given in (7), we can use (23) to derive aggregate capitalK as a function
of the interest rate r, denoted by K (r). Then we obtain the aggregate investment demand curve
δK (r). Next we derive the aggregate saving curve. Aggregate savings S can be shown as

S ≡ Y − C −G− η

2
K2 − χK

= (r + δ − ϑ)K + wL (1− ϑah/r) +
1

2
ηK2

(
1− ϑ

r

)
+λkK

∑
j

pjµ̃
2
j(1− τk)

2(1− τJ)
2

µ̃j(1− τk)(1− τJ) + (γθ)−1
+ (1− ϑ/r) (rB +Υ). (24)

14There is a well-known issue of calculating the Gini coefficient for a distribution with negative values. In our case,
the negative wealth of some borrowing agents is treated as zero.
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where we have substituted the aggregate consumption function (18) into the above equation. Since
aggregate capital K is a function of r, aggregate output Y is also a function of r . As a result, S is
a function of r. Aggregate savings consist of five components. The first component (r + δ − ϑ)K

represents savings out of capital assets. The second component is precautionary savings against
the Brownian labor income risk. The third component represents savings out of capital returns.
The fourth component represents precautionary savings against the capital return jump risk. The
last component is proportional to public savings (taxes minus government expenditure excluding
lump-sum transfers/taxes).

By the market-clearing condition, aggregate saving is equal to aggregate investment so that

S (r) = δK (r) , (25)

which determines the stationary equilibrium interest rate. Following the proof by BCM, we can
show that the equilibrium interest rate r satisfies 0 < r < β.

By (23), we can also show that an increase in the capital income tax rate (τk or τJ) reduces
the demand for capital for any given r. At the same time, the tax increase pushes down the saving
curve according to (24). The equilibrium level of capital stock thus falls; but depending on the
magnitude of reductions in demand for capital and supply of saving, the equilibrium interest rate r
may or may not fall.

Figure 2: Illustration: Investment and Savings functions with different τk

Note: we use parameters obtained from calibration below. “High τk” corresponds to an economy with 5% higher in
the level of tax rate. “fix w” means fixing the wage rate.

Given the calibrated parameter values in the previous section, Figure 2 illustrates the impact
of a higher capital tax rate τk. We find that the equilibrium interest rate rises with τk since the fall
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of saving dominates that of capital demand. Similar qualitative impacts on saving and investment
curves are found for adjusting tax rates τJ , and therefore we leave them out for simpler exposition.

According to our equilibrium definition, we take B as given and allow Υ to be determined
endogenously such that the government budget constraint holds. A special feature our model is that
aggregate Ricardian equivalence holds in the following sense. A dollar increase in the government
bond supply B can be offset by r dollars decrease in the government transfer. As a result, the
changes in B and Υ can offset each other so that aggregate consumption in (18) and aggregate
savings in (24) do not change with B. By (23), the aggregate investment demand does not depend
on B or Υ. Thus, the equilibrium aggregate capital stock K, the interest rate r, and the wage rate
w do not change with B provided that rB+Υ is held fixed. However, debt policy B has an impact
on the individual decisions and shifts the wealth distribution. Every household prepares exactly
enough to offset the consequent change in the lump-sum transfer/taxes and bond holdings, and this
shift has unequal impact on households in an environment with uninsurable idiosyncractic risks.
We will provide a further discussion on the wealth distribution later.

4.2 Income and Wealth Distributions

To study the wealth distribution, we substitute the optimal consumption rule (10) into the wealth
dynamics (6) to derive

dxt = −ρxxtdt+ µxdt+ ϕwℓtdt+ dJt, (26)

where ρx ≡ ψ (β − r) and ϕ ≡ 1− ϑξℓ
w

, and

µx ≡
(
Rk − χ− r

)
k − η

2
k2 − ϑξ0 +Υ, (27)

Clearly, ρx > 0 if r < β. The term ϕ represents the marginal propensity to save (MPS) out of labor
income. We restrict parameter values such that ϕ > 0 in equilibrium.

Let zt ≡ wℓt denote labor income. It follows from (4) that

dzt = ρℓ (Z − zt) dt+ σz
√
ztdW

l
t , (28)

where Z ≡ wL and σz ≡
√
wσℓ. For ρx > 0 and ρℓ > 0, the joint wealth and labor income pro-

cess {xt, zt} has a limiting stationary distribution if Eν ln (1 + q) < ∞ (Jin, Kremer, and Rüdiger
(2020)). The assumption on the jump distribution ν means intuitively that large jumps are not
strong enough to push the process eventually to infinity. By a law of large numbers, the stationary
distribution of the joint process gives the cross-sectional stationary distribution of wealth and earn-
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ings.15 Given the HED (5) for the jump size q > 0, it follows from Jin, Kremer, and Rüdiger (2020)
that the joint process {xt, zt} has a stationary distribution and its law converges to this distribution
exponentially fast.

As is well known, the square-root labor income process zt has a stationary Gamma distribution,
which has an exponential tail. To study the tail property of the wealth distribution, BCM analyze
the exponential moments of xt as t → ∞, limt→∞ E [exp (αxt)] for α > 0, following Keller-
Ressel and Mayerhofer (2014) and Glasserman and Kim (2010).16 Then, the effects of capital tax
can be shown explicitly by modifying their result; both the stationary wealth and labor income
distributions have exponential tails with the exponential decay rates given by

αx ≡ min
j

{
1

(1− τk)(1− τJ)µ̃j

}
, αz ≡

2ρℓ
σ2
ℓ

.

Therefore, a higher capital tax rate in τk or τJ increases the decay rate of the wealth distribution.
Given our baseline calibration in Table 1 without taxing the capital income jump, we find

that αx = 1/[(1 − τk)µ̃2] = 0.0032 and αz = 0.50. Thus the wealth distribution has a much
smaller exponential decay rate than the labor income distribution. Intuitively, the exponential
decay rate of the wealth distribution depends on that of the capital return jump size distribution. If
the capital income jump size is drawn from some exponential distribution with a sufficiently large
mean µj, then the exponential decay rate of the wealth distribution is given by 1/µj, which can be
much smaller than the exponential decay rate of the income distribution αz. The larger is µj, the
smaller is the exponential decay rate of the wealth distribution. Intuitively, the top wealth share is
essentially determined by those who receive large capital income jumps. Without capital income
jump risks, the wealth distribution would have a lighter tail than the income distribution.

In addition to the analysis of the tail property, we next study the skewness and the kurtosis of
the wealth and labor income distributions, denoted by Skew[x] and Kurt[x] for any variable x.
BCM derive the following explicit expressions for these statistics for the HED in (5):

Var[z] =
σ2
zZ

2ρℓ
, Skew[z] =

√
2σ2

z

ρℓZ
, Kurt[z] =

3σ2
z

ρℓZ
,

Var[x]

Var[z]
=

ϕ2

ρx (ρx + ρℓ)
+

λkKζ2
2ρxVar[z]

, (29)

Skew[x]

Skew[z]
=

2
√
ρx (ρx + ρℓ)

2ρx + ρℓ

[
1 +

(λkKζ2) (ρx + ρℓ)

2Var[z]ϕ2

]−3/2

+
λkKζ3

3ρxSkew[z] (Var[x])
3/2
, (30)

15This distribution can be derived numerically using the transform analysis of Duffie, Pan, Singleton (2000).
16Notice that when a limiting stationary distribution exists, the limiting exponential moment of xt does not depend

on the initial value x0.
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Figure 3: Inequality of Wealth and Income with Different τk in Equilibrium

Note: we use parameters obtained from calibration below and change the capital tax rate τk.

Kurt[x]

Kurt[z]
=

ρx (5ρℓ + 6ρx)

(3ρx + ρℓ) (2ρx + ρℓ)

(
1 +

ϖ1ρx (ρx + ρℓ)

ϕ2

)−2

+
3

Kurt[z]

[
ϕ2 (ρℓ [ρx (ρx + ρℓ)ϖ1 + ϕ2] + 3ϕ2ρx)

(3ρx + ρℓ) [ρx (ρx + ρℓ)ϖ1 + ϕ2]2
− 1

]
+

[
3ϕ2

ρx (3ρx + ρℓ)

σ2
zZVar[z]

2 (ρx + ρℓ)
ϖ1 +ϖ2

]
1

Var[x]2Kurt[z]
,

where

ζm ≡ Eν [qm] = m!
n∑
j=1

pjµ
m
j for m ≥ 1.

and ϖ1 > 0 and ϖ2 > 0 are defined in the appendix of BCM.
Using the above expressions, we can easily show that without the capital income jump risk

(i.e., λk = 0), increasing the tax rate τk reduces the relative skewness Skew[x]/Skew[z] and the
relative kurtosis Kurt[x]/Kurt[z] if the equilibrium interest rate r rises or ρx declines.

By contrast, in the presence of the capital income jump risk (λk > 0), capital tax may not
necessarily reduce the relative skewness because the additional terms in (30) change in a complex
way as K, ρx, and ϕ all change with the capital tax rate.

Given our calibration, the equilibrium interest rate r increases with τk, leading to a fall in
ρx = ψ(β − r) as shown in Figure 3. In the absence of jump risks, this scenario would result
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Figure 4: Inequality of Wealth and Income with Different Jump Tax τJ in Equilibrium

Note: we use parameters obtained from calibration below and change the capital tax rate τJ .

in a reduction of Skew[x]/Skew[z], indicating that capital taxation can mitigate the inequality
generated by the labor income risk. However, the presence of capital jump income risks can
change this outcome. Figure 3 shows that Skew[x]/Skew[z] initially rises with the tax rate τk and
even displays a hump-shaped pattern. The same pattern is true for the relative kurtosis (albeit the
turning point will be seen at a higher tax rate τk).

Notice that MPC goes down when the tax rate τk goes up. This means that everyone in the
economy saves more or borrows less out of their wealth. Therefore, wealth skewness or kurtosis
relative to income skewness can go up as the rich saves more and this effect dominates under our
calibrated parameter values. Recall that the decay rate of the wealth tail is higher with a higher tax
rate τk, so the relative skewness and kurtosis of wealth eventually decline with the tax rate τk.

By contrast, when the jump capital income tax rate τJ goes up (Figure 4), the relative skewness
and kurtosis of wealth decline, although the effects on aggregate variables are similar to those of
raising τk. Intuitively, a higher τJ reduces the sudden large fortunes of the rich and reduces the
wealth inequality.

As both tails and moment statistics cannot fully characterize the whole wealth distribution, we
provide additional statistics in the next section.
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5 Fiscal Policy Experiments

In this section, we consider four fiscal policy experiments with policy instruments (τk, τℓ, τJ , B,G,Υ) .

For all these experiments, we hold G and τℓ fixed and study the effects of changes in some of the
other policy instruments on the equilibrium aggregate variables and wealth distribution.

Specifically, we study the following four policy experiments starting from the same calibrated
parameter values in Table 1:

1. Fixing (τJ , B,G) , increase τk and transfer the increased tax revenue to all households equally
by raising Υ.

2. Fixing (τk, B,G) , increase τJ and transfer the increased tax revenue to all households equally
by raising Υ.

3. Fixing (τJ , G,Υ) , increase τk and use the increased tax revenue to finance additional gov-
ernment debt by raising B.

4. Fixing (τk, G,Υ) , increase τJ and use the increased tax revenue to finance additional gov-
ernment debt by raising B.

We focus on a positive analysis only and do not consider household welfare implications. For
all 4 policies, we adjust the increase in τk or τJ such that the government raises the same amount
of tax revenues. We will show by numerical solutions that taxing the capital income jumps to fund
more government debt (policy 4) is the best of all four policies as it generates the least wealth
inequality.17 In addition, policy 4 also generates a mild distortion on efficiency.

We start our analysis with policies 1 and 2 in the next two subsections, because our definition
of equilibrium assumes that B is fixed. We then consider the impact of changes in B in subsection
5.3.

5.1 Aggregate Effects

In this subsection, we study the aggregate effects of policies 1 and 2 and leave the distributional
effects to the next subsection. We focus on the output losses after raising either τk or τJ . We
normalize the total tax revenues (from the right-hand side of the government budget constraint) in
the benchmark calibration to be 100%. Figure 5 shows that the output loss as a function of the
extra total tax revenue raised.

17The effect of debt policy in incomplete-market models was discovered at least since Aiyagari and McGrattan
(1998). A higher level of government debt improves risk-sharing, and our model’s result is related to that.
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Figure 5: The different effects from flat-rate and progressive taxation

By the analysis in Section 4.1, the aggregate capital stock K declines when either τk or τJ is
increased, but the change is smaller if the government raises revenues from raising τJ , compared
to raising τk. The reason is that the capital demand in (11) is insensitive to the change of τJ given
our calibrated parameter values. Specifically, notice that µj = (1 − τJ)µ̃j and τJ only affects the
jump risk premium ∑

j

pj

µ−1
j + γθ

,

which is not sensitive to τJ given the equilibrium value of θ (which is 25) and other parameters in
our calibration. Our calibration specifies two components in the HED: µ̃2 is large with a very small
p2, while µ̃1 is small with a large p1. Intuitively, households would still invest as much whether
they earn $600 million or $400 million a year, as long as it keeps them at the top. The consequence
is that the elasticity of investment decision is less responsive to progressive taxation.

In other words, to raise the same amount of tax revenues, capital will be distorted less under
policy 2 and the output loss is thus smaller. Figure 5 shows that to obtain extra 5% tax revenue,
policy 1 generates 4.7% fall in output while policy 2 only generates 2.2%. In addition, the output
loss is almost a linear function of the tax revenue gain under policy 2, while the output loss under
policy 1 is a convex function. That is, to achieve higher tax revenues, the distortion on output
becomes more severe if the government raises only the flat-rate tax τk.

5.2 Distributional Effects

In this subsection, we study both the aggregate and distributional effects of policies 1 and 2. Sup-
pose that the government raises either τk or τJ such that the government can receive an extra tax
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revenue, say 5% out of the original level. Table 2 shows the outcomes of lump-sum transfer redis-
tribution. There are three effects.

Table 2: Taxation with lump-sum transfer policy

Capital Wealth r(%) MPC(%) Bottom
50%
(%)

Top
10%
(%)

Top
1%
(%)

Top
0.1%
(%)

Gini
Coeff.
(%)

τk = 0.25,
τJ = 0

2.48 4.05 2.50 20.00 1.5 62.7 32.2 15.0 77.0

τk = 0.3115,
τJ = 0

2.26 3.94 3.05 19.72 0.50 63.4 32.0 15.3 77.5

τk = 0.25,
τJ = 0.1373

2.36 4.08 3.11 19.70 0.87 63.1 32.0 15.0 77.3

Notes: For each parameter, the corresponding row shows the result in the stationary equilibrium. Both taxation policies
raise additional 5% more revenues compared to the benchmark (first row).

First, as previously demonstrated, taxing capital income jumps in our environment better targets
individuals with less elastic capital investment incentives, resulting in lower aggregate distortion
compared to the flat-rate tax τk. Thus, aggregate investment and capital falls less with raising τJ
than with raising τk, and so does the arrival rate λkK of capital income jump. This effect will
reduce inequality, but the progressive taxation reduces less because the jump probability λkK falls
less.

Second, the government transfer increases households’ net worth and decreases precaution-
ary savings (influencing ξ0 in (9) and the wealth accumulation process (26)), prompting poorer
households to borrow in order to boost their consumption. In our model, the absence of borrowing
constraints results in some poor individuals accumulating debt, causing the bottom 50% to hold
significantly less wealth. Consequently, the top 10% hold more wealth, and the wealth Gini coeffi-
cient rises. Therefore, the lump-sum transfer policy exacerbates inequality under both types of tax
policies.18

Third, we find that the increase in wealth inequality is less severe due to the general equilibrium
price feedback effect. In particular, the wealth shares of top 1% and top 0.1% are similar to those

18For similar results, see Kaymak and Poshke (2016). By contrast, in a model without considering the distribution
of tax revenues, Benhabib et al. (2011) show that capital tax on r and Rk reduces wealth inequality when wealth
follows a Kesten process with a stochastic rate of return. The reason is that the thickness of the right tail depends
on the probability of the stochastic wealth return (net of consumption out of wealth) that is above 1 in discrete time
and above 0 in continuous time. Inequality is the result of some lucky agents that get long streaks of realizations of
high returns. Taxing the stochastic return of wealth/capital reduces the range of its realized values and therefore the
inequality.
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in the benchmark calibrated model. The wealth Gini coefficients are slightly higher (around 0.774
under the two types of tax policies) than the benchmark Gini coefficient. The main reason is that
the equilibrium features a higher interest rate after an increase in the capital tax rate, which puts
a downward pressure on the borrowing from the poor households. Though the wage rate declines
as K declines, this negative effect on wealth inequality is dominated because of the higher debt
incurred by the poor.

Overall, the redistribution effects of the two types of taxation are similar, particularly for the
wealthiest households, as shown in Table 2. While the progressive tax policy is designed to reduce
inequality more effectively, it also maintains a higher capital level, leading to a higher jump arrival
rate and increasing the wealth share of the top households. These two effects balance each other
out quantitatively, resulting in the redistribution effect of raising the progressive tax rate being
similar to that of increasing only the flat capital tax rate.

Combining the aggregate and distributional results, we find the following. Taxing capital in-
come via the all-component rate τk together with lump-sum transfer redistribution not only reduces
efficiency (measured by less investment and less output) but also increases inequality, which is usu-
ally considered as a bad policy outcome. Therefore, it is natural to examine the second spending
policy that allows the government debt to vary (see Table 3).

5.3 Debt Policy

For polices 3 and 4, the government uses the increased tax revenues to finance additional govern-
ment debt instead of transfers. An increase in public debt injects public liquidity and raises the level
of safe assets for precautionary saving purposes similar to Aiyagari and McGrattan (1998). We as-
sume that the increased debt ∆B in policy 3 and transfers ∆Υ in policy 1 satisfy r∆B = ∆Υ,

where r is the equilibrium interest rate in policy 1. Then by the limited Ricardian equivalence
discussed before, we deduce that policies 1 and 3 give the same equilibrium r, w,K, and Y. The
same is true for policies 2 and 4.

However, the higher level of debt turns out to generate opposite distributional consequences
compared to the case of lump-sum transfers.

The main difference between the transfer policy and the debt policy is that the former changes
each household’s consumption decision rule directly (see (9) and (10)), while the latter does not,
holding prices fixed. As a result, these two types of polices generate different wealth dynamics
and hence wealth distributions. In general equilibrium, there are three effects on inequality for
the debt policy, similar to the case of the transfer policy. First, the decrease of the capital stock
reduces the arrival rate of capital income jumps, thereby reducing inequality. Second, raising the
government bond supply provides more assets for the households to save and reduces precautionary
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Table 3: Taxation with bond policy

Capital Wealth r(%) MPC(%) Bottom
50%
(%)

Top
10%
(%)

Top
1%
(%)

Top
0.1%
(%)

Gini
(%)

τk = 0.25,
τJ = 0

2.48 4.05 2.50 20.00 1.5 62.7 32.2 15.0 77.0

τk = 0.3115,
τJ = 0

2.26 4.33 3.05 19.72 4.88 58.7 29.4 14.0 73.2

τk = 0.25,
τJ = 0.1373

2.36 4.42 3.11 19.70 4.75 58.9 29.5 13.8 73.5

Notes: For each parameter, the corresponding row shows the result in the stationary equilibrium. Both taxation policy
raises 5% more tax revenues compared to the benchmark (first row).

savings. This effect raises inequality. Third, the rise of the equilibrium interest rate discourages
poor households to borrow.

Unlike the transfer policy, the net effect of raising the government debt under both types of
capital taxation is to reduce inequality in a similar magnitude quantitatively. For example, the Gini
coefficient falls from 0.77 to just slightly above 0.73 in the two cases. The bottom 50% wealth
share and the top 1% wealth share are quite close too. However, the capital stock is 4.42% higher
when raising τJ than that when raising τk. These results lead to us to conclude that taxing capital
income jumps to fund the government debt can achieve a good balance between efficiency and
redistribution.

6 Conclusion

In this paper we study the impacts of capital taxation in a tractable heterogeneous-agent model
with incomplete markets in continuous time. The environment features that rich people can build
wealth from rare capital return/income jumps through technology innovations or R&D and the
jump size is stochastic. The jump size distribution is important to explain the wealth distribution
in the extreme right tail.

We find that taxing capital income surges can be effective, because the investment incentive
may not be sensitive to jump risks. When tax revenues are transferred to all households evenly,
reducing the precautionary savings of the poor, such a policy raises wealth inequality. But when
tax revenues are used to finance more government debt (public liquidity provision), such a policy
reduces wealth inequality. In future research, an optimal policy design in this kind of environ-
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ment with jump risks could shed light on the optimal tax schedules, especially if the jump risks
themselves are time-varying.
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