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Abstract:

This paper introduces a novel methodology to enhance the granularity of Inter-Country Input-

Output (ICIO) tables. While our general methodology can be applied to any products of interest,

we show that the well-documented distortions caused by sectoral aggregation in ICIO tables

are particularly pronounced for products with a low substitutability, such as those essential to

the green transition (e.g. electric batteries, rare earths). We therefore apply our framework to

construct a disaggregated ICIO table that singles out 129 products essential to the energy

transition. We then simulate a hypothetical scenario of an East-West supply chain decoupling

in green products through a multi-country multi-sector model calibrated with our tailored

disaggregated ICIO table. Results reveal substantial economic costs: welfare losses reach 3%

and trade between blocs contracts by 20%, even when accounting for trade diversion through

neutral countries. We finally quantify how the green supply chain decoupling increases the

intensities of greenhouse gas emissions, highlighting how trade barriers on green sectors

affect both economic efficiency and climate objectives.

Keywords: Global trade, sectoral granularity, global value chains, decoupling, green transition
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Non-technical summary 

This paper examines how trade barriers, when targeted specifically at products crucial for the 

green transition, can affect the global macroeconomy and greenhouse gas emissions. It 

investigates what happens when countries impose trade restrictions on environmental-friendly 

products – like electric vehicles and renewable-energy equipment, thereby affecting the global 

supply chains of green products. This focus is particularly topical given recent policies that 

targeted this type of goods such as the US Inflation Reduction Act (August 2022), US tariffs 

on electric vehicles and batteries (May 2024) or EU tariffs on Chinese electric cars (July 2024). 

But analyses typically struggle to analyse the supply chains of green products because existing 

input-output tables – which describe the supply-use relationships of goods and services across 

countries and sectors – group green products together with non-green ones. For example, 

standard input-output tables bundle electric and thermal cars together in a single sector (“motor 

vehicles”), which masks the unique features of electric cars. This limitation is particularly 

central in multi-country multi-sector models (e.g., Baqaee and Farhi, 2024) that are calibrated 

on input-output tables – and for which the lack of granularity will not allow to simulate trade 

shocks targeted on green products or to emulate substitution between green and non-green 

goods.  

To address this limitation, we develop a new methodology to build tailored input-output tables 

that isolate specific products – which we apply to green products. This method involves 

breaking down broad economic sectors in input-output tables into more granular sub-

categories. In our application to green products, we separate 129 green products (e.g., electric 

vehicles, solar panels, gallium, palladium, lithium cells, and batteries) from other (non-green) 

goods. For that purpose, we use detailed bilateral trade data to obtain detailed trade shares 

between bilateral partners. This is complemented with the use of literature on supply chain 

linkages and industry reports to accurately reflect the supply-use between the granular sub-

categories. In the end, we construct a tailored input-output table describing the global sectoral 

interlinkages across green products.  

Using this enhanced input-output table, we study a hypothetical scenario where two major 

geopolitical blocs (East and West) cease trading green products with each other, while a 

neutral bloc remains unaffected by restrictions. Our findings indicate significant economic 

consequences from such trade fragmentation with global welfare declining by as much as 3%, 
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and international trade in green products dropping by up to 20% – despite some trade flows 

being diverted through neutral countries. The restrictions lead to higher prices for green 

products globally, with downstream goods, such as electric vehicles, facing particularly sharp 

increases. This undermines the adoption of green technologies, leading to higher greenhouse 

gas emissions in the global economy, with cumulative additional emissions over twenty years 

comparable to those of large countries such as Japan or Brazil. 

The analysis emphasizes that sectoral aggregation in input-output tables matters particularly 

when the goods that are aggregated together cannot be easily substitutable. Specifically, when 

the elasticities of substitution are low, we show that the impacts of a trade shock on welfare 

and consumer prices are significantly amplified when sectoral granularity is higher. Such 

detailed input-output tables are particularly essential in the context of the green transition as 

many green products are difficult to replace or substitute – which amplifies the economic shock 

when their supply chains are disrupted.  

In policy terms, this research underscores the importance for policymakers to consider the high 

economic costs associated with trade fragmentation targeting critical green technologies. More 

broadly, the paper proposes a generic method to proceed to granular analysis of supply chains 

as the method for disaggregating input-output tables can be seamlessly applied to different 

categorizations beyond green products (e.g., dual-use technologies, semi-conductors). In an 

era of increasing geopolitical risks, the paper enriches the possibilities to run model simulations 

and analyse targeted trade policies. This is key to support better-informed decision-making as 

we show that using standard ICIO to do so might lead to an under-estimation of their impact. 

 

  

ECB Working Paper Series No 3152 3



 

Introduction  

Two phenomena increasingly contribute to reshaping the world economy. One is the growing 

and well-documented impact of climate change, and the paramount importance of climate 

transition policies. The other is stark rise of trade fragmentation, with trade policies increasingly 

shaped by geopolitical considerations leading to an increasing array of trade restrictions. 

Conceptually, trade fragmentation is a policy-driven reversal of global economic integration, 

guided by considerations such as national security, sovereignty, autonomy, or economic 

rivalry. While trade fragmentation affects all trade flows, there has been an increasing number 

of restrictions imposed on green products such as the 2022 US Inflation Reduction Act or the 

EU tariffs on Chinese electric vehicles in 2024. 

However, little is known on the potential impact of trade fragmentation on green products. A 

key challenge is that the data typically used to examine the effects of trade fragmentation 

scenarios – namely, Inter-Country Input-Output (ICIO) tables – are too aggregated to isolate 

specific green products such as electric vehicles or renewable-energy equipment. For 

example, the widely used TiVA ICIO tables from the OECD features 45 sectors, but “electric 

vehicles” are aggregated within the “motor vehicles” sector which also includes “thermal 

vehicles” – which electric vehicles are set to replace. This low granularity of ICIO tables across 

sectors makes it impossible to single out green products and does not allow to 1) calibrate a 

trade shock targeting only green products, 2) model substitution effects between green and 

non-green products, and 3) isolate the impacts of trade fragmentation on specific green 

sectors.  

Against this background, we present a general methodology to build tailored ICIO tables that 

can isolate specific products, and apply it to green products. Starting from an standard ICIO 

table, our method expands sectoral granularity by dis-aggregating sectors into green and non-

green sub-sectors. For example, the sector “motor vehicles” in a standard ICIO table is split 

into “electric vehicles” and “non-electric vehicles”. This dis-aggregation is performed by relying 

on bilateral product-level trade data and information on users of green products, hence 

ensuring that bilateral country linkages are accurately represented and that the supply of green 

products is properly allocated to the sectors (or final users) who purchase them. Using this 

framework, we construct a tailored ICIO table which isolate 129 green products (e.g., vehicles 

with both compression-ignition combustion engine and electric motor for propulsion, solar 

panels, gallium, palladium, lithium cells and batteries) which we group into eight homogeneous 
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green sectors (mined rare earth, processed rare earth, chemicals for the green transition, 

electric batteries, renewable-energy mechanical equipment, renewable-energy electrical 

equipment, electric vehicles, green electricity). The resulting tailored ICIO table can be used 

to study the global value chains of green products.  

Using our tailored disaggregated ICIO table, we quantify the impact of a hypothetical scenario 

where two antagonist geopolitical blocs (East and West) massively raise trade barriers on 

green products vis-à-vis each other – while a neutral bloc remains unaffected. However, one 

additional challenge when studying the green transition is that ICIO tables do not account for 

future transformations caused by the on-going green transition. We account for this by 

estimating how changes in final demand for green products will affect the outputs of green and 

non-green sectors by 2030 (using the Leontief inverse matrix which links output and final 

demand). For this, we use assumptions from the International Energy Agency on the market 

sizes of green sectors by 2030. In the end, we obtain an ICIO table representing a hypothetical 

global economy by 2030. We use this tailored disaggregated ICIO table by 2030 to calibrate 

the Baqaee and Farhi (2024) multi-country multi-sector model and simulate the trade 

fragmentation scenario on green products . Our results point to welfare losses up to 3% in the 

antagonist blocs and a significant (up to 20%) reduction in trade flows between geopolitical 

blocs. Prices of green products also increase, by up to 3% globally, with sharper price hikes 

for downstream products like electric vehicles. The higher prices of green products would 

undermine their adoption, meaning a less energy-efficient global economy. We find that our 

scenario of trade fragmentation on green products would lead to higher greenhouse gas 

emissions, with cumulative additional emissions over twenty years comparable to total 

emissions of large countries such as Japan or Brazil. 

This paper is, to the best of our knowledge, the first to simulate the effects of a trade war across 

green products. In that sense, it relates to the fast-expanding literature that quantifies the 

macroeconomic effects of trade fragmentation (see also among others Bonadio et al., 2021; 

Eppinger et al., 2021; Goes and Bekker, 2022; Quintana, 2022; Attinasi et al. (2023a; 2023b), 

Campos et al., 2023; Javorcik et al., 2024; Attinasi, Mancini et al., 2024; Quintana, 2024; 

Attinasi et al., 2025a). Our study extends this literature by exploring restrictions along green 

products. This paper notably complements Weber et al. (2025) who studied the interplay 

between trade fragmentation and climate change, but without relying on model-based 

estimates.  
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We also contribute to the literature that shows that the level of aggregation in ICIO tables can 

affect the results of ICIO-based analysis. This issue has been identified since the 1950s (e.g., 

Hatanaka, 1952) and regularly poses problems to economists studying the supply chains of 

specific products (e.g., Michel et al., 2018; Prataviera et al., 2024). The literature generally 

argues that a higher granularity improves the accuracy of ICIO-based analysis (Lenzen, 2011; 

Steen-Olsen et al., 2013). Complementing the literature, we provide a general method – that 

can be applied seamlessly to any set of products – to enhance the sectoral granularity of ICIO 

tables, thereby offering a remedy to the distortions posed by aggregation in ICIO tables.  

We further contribute to this literature by identifying when ICIO aggregation matters the most 

– specifically when the substitutability between varieties of products is low (i.e. when trade 

elasticities are low). This is precisely the case for many green products, where substitutability 

is low due to concentration of supply and limited alternative sources (Massari and Ruberti, 

2013; Kowalski and Legendre, 2023). In that respect, the application of our methodology to 

green sectors makes the contribution particularly on point. More specifically, we study the 

impact of ICIO aggregation by running stylised autarky scenarios using the Baqaee and Farhi 

(2024) model calibrated on ICIO tables with different levels of aggregation. When elasticities 

of substitution are low, we find that doubling the granularity of the ICIO table doubles the impact 

in terms of welfare losses (9% welfare losses in a standard ICIO, 20% losses in an ICIO with 

twice as many sectors). Similarly, tripling the granularity also triples the effect. Importantly, the 

degree of ICIO aggregation matters only when the substitutability is low: this is because sub-

sectors aggregated in a standard ICIO would be assumed to be perfect substitutes. Dis-

aggregating these sub-sectors and assuming a low substitutability creates frictions that 

translates into welfare losses.  

Our paper is relevant from a policy perspective as it enriches the possibilities to run simulations 

of targeted trade policies. It shows that the approach of using standard ICIO to simulate such 

targeted trade restrictions – as in, e.g., Bachmann et al. (2022) and Attinasi et al. (2023b) – 

might lead to under-estimating their impact. This is key as more and trade policies are 

weaponizing critical inputs that are notoriously hard to substitute (e.g., natural gas, advanced 

semi-conductors, rare earth minerals). Our framework offers a way to simulate and assess the 

impacts of such policies. 

The rest of the paper is organized as follows: section 1 reviews the literature on ICIO 

aggregation, section 2 runs a stylized exercise on the importance of ICIO granularity for model 
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simulations, section 3 details our approach to enhance the granularity of ICIO; finally, section 

4 applies our methodology to trade barriers along green products. 

 

1. Literature review on ICIO aggregation 

ICIO tables describe the supply (sales) and use (purchases) relations between producers and 

consumers, both within and between countries. Figure 1 gives a simplified example with three 

countries (A to C) and three producing sectors (1 to 3). White cells are flows of intermediate 

inputs (goods and services) from producers (1 to 3) in any country (A to C) to other producers 

(1 to 3) of the same or other countries. Sub-matrices on the diagonal represent domestic 

linkages (e.g., the upper left 3x3 matrix are supply-use relationships within country A) while 

non-diagonal matrices are cross-country linkages. Light blue cells are flows of final products 

from producers (1 to 3) to consumers (in countries A to C). Proceeding by rows, summing the 

sales of intermediate inputs (in white cells) and of final goods and services (in light blue cells) 

amounts to the gross output of a given country-sector, shown in dark blue in the rightmost 

column. Yellow cells represent value added (gross output minus intermediate inputs). As was 

the case for rows, summing over columns provides the gross output of country-sector pairs (in 

dark blue).  

ICIO tables are central to various types of economic analysis. A first use is to calibrate multi-

country multi-sector models and study the propagation of shocks through global value chains 

(de Backer and Miroudot, 2014; de Vries et al., 2019; Giammetti, 2020; Bonadio et al., 2021; 

Baqaee and Farhi, 2024). ICIO can also help tracing the flows of goods and services between 

industries and countries, identifying position and comparative advantages in global value 

chains (Borin and Mancinin, 2019; Borin et al., 2025). Third, ICIO are at the core of network 

analysis to identify industries or countries acting as central hubs (Blöchl et al., 2011; Acemoglu 

et al., 2012; Carvalho, 2014; Pasten et al., 2020). Our paper contributes by proposing a novel 

method to expand the granularity of ICIO tables, allowing above analysis to be run on tailored 

ICIO tables. 
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Figure 1. Example ICIO table 

  

Source: authors. 

The issue of aggregation in ICIO tables is a long-standing topic in the literature, which generally 

argues that greater granularity improves the quality of ICIO-based analysis. Aggregating data 

entails information losses which can lead to misleading linkages in ICIO tables, especially if 

heterogenous sectors are bundled together. This can lead to "aggregation bias”, a term coined 

by Morimoto (1970) to describe differences between the outputs estimated on aggregated data 

and those obtained on dis-aggregated data. Various papers (Hatanaka, 1952; McManus, 1956; 

Theil, 1957; Fisher, 1958; and Ara, 1959) studied the necessary conditions to maintain 

accurate relationships after aggregating sectors, concluding in general that sectors bundled 

together must have a similar structure of inputs and outputs. This literature from the 1950s was 

later picked up by Kymn (1990), Cabrer et al. (1991), and Oksanen and Williams (1992) who 

show that sectoral aggregation in ICIO can induce significant differences in the outputs of the 

models calibrated on these ICIOs. In addition, aggregated ICIO tables can lead to misinformed 

decision-making, as aggregation can lead to misallocations of inventories (Bunsen and 

Finkbeiner, 2022). The literature generally argues that a higher granularity improves the 
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accuracy of ICIO-based analysis (Steen-Olsen et al., 2013). This is notably important for 

sectoral aggregation, as the position of a sector in the value chain (upstream or downstream) 

affects output volatility (Koning et al., 2014; Olabisi, 2019).1 This is supported by Flaaen et al. 

(2024) finding a negative bias associated with aggregation in measuring GVC activity, 

suggesting that higher granularity provides a better understanding of how firms adjust to 

shocks. Importantly, the accuracy of ICIO-based analysis is improved significantly by more 

granular ICIOs, even if the granularity is achieved via an approximation (Lenzen, 2011). We 

contribute to this literature in two ways: first by evaluating the impact of aggregation on model-

based results, second by providing a method to dis-aggregate ICIO up to the level needed by 

the researcher. 

Recent studies have developed techniques to enhance the granularity of ICIO tables. Borin et 

al. (2023) pioneered this line of work by disaggregating sectors in a standard ICIO into sub-

sectors affected by Western sanctions against Russia. Their method – subsequently adopted 

in Conteduca et al. (2025) and Attinasi et al. (2025b) – is close to ours as they also rely on 

product-level bilateral trade data. However, a key limitation is their assumption that sub-sectors 

use inputs with the same intensity. For example, their framework would assume that electric 

vehicles and thermal cars (two sub-sectors of the “motor vehicles” sector in the standard ICIO) 

would use the same proportion of electric batteries as inputs. In contrast, our methodology 

accounts for heterogeneous input use, better capturing the sector-specific nature of supply 

chains – for instance, our framework would allow electric batteries to be used more intensively 

for electric vehicles than in thermal cars. This refinement yields a more accurate propagation 

of shocks through production networks. Another related paper is Bolhuis et al. (2023) who 

developed a detailed ICIO covering 136 agricultural and mining commodities. While their 

method is valuable for these specific sectors, our method offers broader applicability as it can 

be applied to any set of commodities and manufactured goods.  

Beyond its methodological innovation, our paper also provides critical insights into when and 

how the aggregation of ICIO tables can impact model simulations of trade shocks. Using a 

multi-country multi-sector model, we specifically investigate which model parameters magnify 

the divergence between outcomes derived from aggregated versus disaggregated ICIO tables. 

This analysis highlights the conditions under which disaggregation is essential for accurate 

economic modelling, showing that the specific characteristics of green products – such as 

 
1  Similarly, the level of aggregation also matters for countries / regions: see notably Blair and Miller (1983; 2009) 

stating that the aggregation of regions leads to some bias. 
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concentrated supply and limited alternative sources, which imply low trade elasticities – make 

results particularly sensitive to aggregation. This underscores the relevance of our contribution 

for analyses focused on these products. 

 

2.  The impact of ICIO aggregation on model-based results 

2.1 The Baqaee and Farhi (2024) model 

We rely on the Baqaee and Farhi (2024) multi-country multi-sector model to quantify economic 

effects from supply-chain decoupling. The model captures rich sectoral interlinkages through 

production networks and heterogeneities across countries, for example with respect to their 

endowments with factors of production.  

By featuring sectoral interlinkages, the model accounts for amplification effects of trade shocks 

through production networks as well as substitution effects via international trade. The model 

response to a trade shock considers the endogenous reactions by a large variety of producers 

and consumers in an interconnected world economy. The transmission operates primarily 

through the price channel as higher barriers to trade create an import price shock. As a result, 

producers substitute away from more expensive foreign inputs, generating a demand shock 

for their upstream suppliers. The net effect of the substitution decisions by producers on the 

demand of each supplier may be either positive or negative depending on the latter’s exposure 

to the shock. This also re-allocates production across countries, affecting trade along the way. 

It also affects demand for factors of production (capital and labour) leading to adjustments in 

production structures within countries. As the prices of capital and labour adjust, disposable 

incomes of households and their consumption patterns also change. Since consumption 

preferences differ by countries (e.g., type of products, provenance), demand for final products 

is also affected, which propagates upstream to producers. Besides these re-allocation effects, 

consumers also substitute across products given changes in prices for final goods. These 

substitution and re-allocation channels generate general equilibrium effects on prices, 

demand, and supply, which in turn affects trade, production, and welfare.2  

We calibrate the Baqaee-Farhi model using the OECD ICIO TiVA table for 2018, comprising 

67 countries and 45 sectors detailed in Tables A1 and A2 in Appendix A. As the Baqaee-

 
2  See Baqaee and Farhi (2024) for a detailed discussion of the model. 
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Farhi model features intensities in four primary factors (capital, low-, medium-, and high-skilled 

labour) that are not available in the OECD ICIO TiVA tables, we take shares from WIOD socio-

economic accounts.3 We set substitution elasticities to standard values in the literature, as 

detailed in Table 1.  

Table 1. Elasticities of substitution 

Across VA and inputs 0.5 

Across consumption goods 0.9 

Across primary factors 1.0 

Across intermediate inputs 0.2 

Trade elasticities Fontagné et al. (2022) 

 

2.2 Aggregate effects 

We first investigate the consequence of calibrating multi-country multi-sector models with more 

granular input output matrices. We compare global welfare and consumer price effects from a 

trade cost shock under three different model calibrations. For the first scenario, the model is 

calibrated on the standard ICIO table. In the second, we split each row and column of the 

standard ICIO matrix into two sub-components, each accounting for 50% of the amount of the 

original aggregate row or column. In the third and final calibration, we split each row and 

column of the standard ICIO matrix into three sub-components, each accounting for 33% of 

the amount of the original aggregate row or column. For illustrative purposes, we apply a very 

large trade cost shock: a 150% increase in iceberg trade costs on each country border so that 

that all countries move towards autarky.4  

We find that increasing granularity in ICIO matrices hugely increases global welfare and 

consumer price effects from trade cost shocks. Global welfare losses amount to -8.5% in a 

calibration with a standard ICIO matrix (Figure 2, panel a). In a calibration where we split each 

sector of the standard ICIO into two sub-sectors of equal size, global welfare losses would 

more than double and reach -19.8%. Finally, global welfare losses even increase to -43.6% in 

 
3  More specifically, for countries that are both in WIOD and OECD TiVA, we assume that the same shares 

apply. For countries that are not in the WIOD but in OECD TiVA, we apply the average intensities per sector 
based on WIOD. Such approximations are somewhat backed by the literature showing that changes in capital 
and labour are generally slow and structural (Saenz, 2022). 

4  This exercise is similar to Bolhuis et al. (2023). While Bolhuis et al. (2023) compare global welfare effects from 
moving to autarky assuming traditional ICIO matrices and ICIO matrices that account for granularity in 
commodities, our investigation is more general as it compares welfare and price effects from trade cost shocks 
in scenarios with twice or three times as many sectors as in traditional ICIO matrices. 
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a calibration where we split each sector of the standard ICIO into three sub-sectors of equal 

size. In turn, increasing granularity in ICIO matrices also hugely increases global consumer 

price effects from trade cost shocks. We find that consumer price effects from moving to 

autarky would more than triple (from +4.9% to +14.9%) in a calibration where we split each 

sector into two sub-sectors; and fivefold (from +4.9% to +24.8%) in a calibration where we split 

each economic sector into three sub-sectors (Figure 2, panel b). 

Figure 2. Global welfare (GNE) and price effects from moving to autarky 

(% deviation from steady state) 

a) Global welfare  

 

  

b) Global consumer prices  

 

Sources: Baqaee and Farhi (2024), OECD TiVA, authors’ calculations. 

Note: Non-linear impact simulated through 25 iterations of the log-linearized model.  

 
Milder welfare losses and consumer price increases observed in calibrations using standard 

ICIO tables with aggregated sectors reflect the implicit assumption that consumers and 

producers can perfectly substitute between goods within the same (aggregated) sector. In 

contrast, calibrations employing more granular ICIO tables relax this restrictive assumption by 

explicitly allowing for imperfect substitutability between goods across narrower sub-sectors. 

When each sector is split into multiple sub-sectors, each sub-sector individually faces the same 

trade cost shocks previously applied to the aggregate sector as a whole. However, imperfect 

substitutability across these sub-sectors – consistent with empirical estimates of intermediate 

and final substitution elasticities – results in additional economic costs, as trade disruptions 

are magnified due to reduced substitution flexibility and increased frictions among narrower, 

more specialized sub-sectors. Consequently, calibrations based on more granular ICIO 

matrices yield significantly larger estimates of global welfare losses and consumer price effects 

from trade disruptions, highlighting the quantitative importance of sectoral disaggregation.  
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2.3 When is this important 

Building on the findings of the previous section – that amid imperfect substitutability, the effects 

of trade shocks are amplified when multi-country multi-sector models are calibrated on more 

granular ICIO matrices – this section explores when the divergence between results based on 

aggregated versus disaggregated tables becomes particularly pronounced. Our analysis 

shows that granularity in ICIO matrices is especially critical when the substitutability between 

imported products (i.e., the trade elasticity) is low, and thus goods across sub-sectors are far 

from perfect substitutes. Figure 3 plots global welfare losses from an autarky shock for 

different calibrations of elasticities, and for a calibration on a standard ICIO (No split) and a 

granular ICIO (Split) where each row and column of the standard ICIO is split into two sub-

components of equal size. Each panel varies one elasticity at a time, while keeping the other 

elasticities at their baseline value (see Table 1).  

Figure 3 (panel a) plots global welfare losses from an autarky shock for different trade 

elasticities (assumed to be homogenous across sectors). It clearly shows that at relatively high 

trade elasticities (7 or larger) global welfare losses in the Split and No split ICIO tables 

converge. Intuitively, when the trade elasticity is very high, approaching infinity, goods across 

sub-sectors become perfect substitutes, eliminating the additional economic costs associated 

with sectoral disaggregation. However, the divergence in welfare losses between the Split and 

No split calibrations increases substantially for trade elasticities below 2, that is when sub-

sectors have lower substitutability. Other elasticities (Figure 3, panels b to e) appear to play a 

minor role. For smaller values of the substitution elasticity across composite value added and 

intermediates (panel b), and across primary factors (panel d) the wedge in global welfare 

losses also increases, albeit by a lower magnitude (while for values of the elasticity below 0.5, 

model results become instable). Similarly, the wedge in global welfare losses increases with 

smaller values for the elasticity across varieties of intermediate inputs (panel e), yet the change 

in the wedge remains small. Finally, different values for the elasticity across consumption 

goods (panel c) does not appear to affect the wedge in global welfare losses. 
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Figure 3. Global welfare losses from autarky under alternative elasticities  

(% deviation from steady state) 

a) Trade elasticities  

 

c) Elasticity across consumption goods 

 

e) Elasticity across varieties of intermediate inputs 

 

  

b) Elasticity across composite VA and intermediates 

 

d) Elasticity across Primary Factors 

 
 

 

Sources: Baqaee and Farhi (2024), OECD TiVA, authors’ calculations.  
Notes: Values for the elasticity across varieties of intermediate inputs and across composite VA and intermediates larger than 2, in combination 
with the baseline values for all other variables, did resulted in inconsistent welfare estimates and are hence not shown on the graphs.  
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This suggests that the aggregation of ICIO tables in general equilibrium models matter for the 

estimation of macroeconomic outcomes from trade shocks, as long as a researcher assumes 

non-zero real rigidities. Aggregation implicitly assumes perfect substitutability among products 

grouped within the same sector. Hence, the economic relevance of disaggregation is greatest 

at low trade elasticities – precisely when substitutability across imported products is limited.  

This is relevant for two reasons. First, recent research (Boehm et al. 2023) have shown trade 

elasticities to be substantially lower than previously thought, even with a long run horizon. 

Second, recent examples of supply disruptions (advanced semi-conductors, natural gas and 

oil following Western sanctions on Russia) have highlighted the importance of accounting for 

the criticality of trade flows in specific goods that may make up only a small share of aggregate 

output, but which can have disproportionate macroeconomic effects when their supply is 

disrupted.  

 

3. A methodology to dis-aggregate ICIO tables 

3.1 General framework 

A generic Inter-Country Input-Output (ICIO) table with 𝐺 countries and 𝑁 sectors is represented 

in Figure 4 where 𝑍𝑖𝑗 is a 𝑁 × 𝑁 matrix of intermediate inputs produced in country 𝑖 and used 

in country 𝑗; 𝑌𝑖𝑗 is a 𝑁 × 1 vector of final goods and services produced in country 𝑖 and absorbed 

in country 𝑗. 𝑋𝑖 is the 𝑁 × 1 vector of gross output produced in country 𝑖. 𝑉𝐴𝑖 is a 1 × 𝑁 vector 

of value added generated by producers in country 𝑖. The ICIO table entails two accounting 

relationships that the sum of rows and columns equals the gross output 𝑋𝑖. Row-wise, it means 

that gross output is the sum what is supplied as intermediate inputs to other producers (matrix 

𝑍) and what is supplied as final products to consumers (matrix 𝑌). Column-wise, it means that 

gross output is the sum of what is used as intermediate inputs from other producers (matrix 𝑍) 

and the value-added (vector 𝑉𝐴). 
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Figure 4. Standard ICIO table 

  

Source: authors. 

 
Standard ICIO tables are provided at a relatively high level of aggregation in terms of sectors, 

generally at 2-digit level, making it challenging to model policies targeted on selected products. 

For example, in the OECD TiVA ICIO table, “electric vehicles” and “thermal vehicles” are 

bundled together in the “motor vehicles” sector. This aggregation makes it challenging to model 

the effects of trade policies that target selected products instead of whole 2-digit sectors. This 

has been the case for most recent measures such as China-US in 2018, US export bans on 

semiconductors over 2020-2022, Western sanctions on Russia in 2022-2023, domestic 

content requirements of the Inflation Reduction Act in 2022, or the new Section 301 tariffs of 

2024. Hence, standard ICIO tables do not allow for 1) simulating targeted trade policies on 

selected products, 2) modelling substitution effects at product-level, and 3) computing the 

impacts (output, prices) on selected sub-sectors.  

To overcome these limitations, we propose a new data-driven methodology to disaggregate 

ICIO tables to isolate the relevant niche products. The idea consists in splitting the 𝑁 sectors 

of the original ICIO into two sub-sectors: one with products subject to the targeted trade policy 

(targeted sub-sector), and one those unaffected (non-targeted). This dis-aggregation is run on 

all 𝐺 countries of the original ICIO, meaning that we disaggregate 𝐺 × 𝑁 country-sectors. As 

country-sectors are both in the rows (supply side) and the columns (use side) of the ICIO, we 

need to disaggregate both: we proceed sequentially by first disaggregating rows (section 3.2) 

before columns (section 3.3). 
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3.2 Dis-aggregating rows (supply side of ICIO) 

The disaggregation relies on splitting each row (representing one country-sector) into targeted 

and non-targeted rows. To do so, we build matrices Γ𝑍 and Γ𝑌containing the share of targeted 

products in the matrices of, respectively, intermediate inputs (𝑍) and final products (𝑌). The 

matrix Γ𝑍 is of size 𝐺𝑁 ×  𝐺𝑁 (the same size as the matrix 𝑍 of intermediate inputs) and its 

elements 𝛾𝑖,𝑗 indicates the share of targeted products in the amount of intermediate inputs sold 

by the country-sector corresponding to row 𝑖 towards the country-sector corresponding to row 

𝑗.5 Multiplying element-by-element matrices Γ𝑍 and 𝑍 as in equation (1) provides the ICIO 

matrix 𝑍Γ whose elements are the amount of targeted products supplied and used between 

producers.6 The ICIO matrix for non-targeted products 𝑍∆ is the difference between the original 

matrix of intermediate inputs (𝑍) and the matrix of targeted products (𝑍Γ) as in equation (2).7 

We apply the same methodology for the matrix of final products (𝑌) with a matrix Γ𝑌 (of size 

𝐺𝑁 ×  𝑁 as matrix 𝑌). 

(1) 𝑍Γ = Γ𝑍 ⊙ 𝑍 

(2) 𝑍∆ = 𝑍 − 𝑍Γ 

The disaggregation then relies on building matrix Γ𝑍 (and Γ𝑌 for final demand). More 

specifically, we need to estimate its elements 𝛾𝑖,𝑗. For clarity, we start by re-writing them with 

the country-sector they relate to as in equation (3) where row 𝑖 relates to sector 𝑠 in country 𝑐, 

and column 𝑗 to sector 𝑡 in country 𝑑. 

(3) 𝛾𝑖,𝑗 = 𝛾{𝑐,𝑠},{𝑑,𝑡} 

We first use bilateral product-level trade data (BACI; Gaulier and Zigagno, 2010) to derive the 

share of targeted products in trade flows. Based on such data, we compute coefficients 𝛿{𝑠,𝑐},𝑑 

which are the share of targeted products in the trade flows of country-sector {𝑐, 𝑠} to country 𝑑 

 
5  The element 𝛾𝑖,𝑗 can be interpreted as: out of 100 products sold by country-sector 𝑖 to country-sector 𝑗, how 

many are targeted products.  
6  Each element 𝑍𝑖,𝑗

Γ  of matrix 𝑍Γ is the amount of targeted products supplied the country-sector corresponding 

to row 𝑖 towards the country-sector corresponding to row 𝑗. The element-by-element multiplication means that 

𝑍𝑖,𝑗
Γ =  𝛾𝑖,𝑗  ×  𝑍𝑖,𝑗. 

7  By construction, the sum of the amounts of non-targeted and targeted products must equal the amount of total 
products from the original ICIO matrix. 
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as in equation (4).8 For example, if country-sector {𝑐, 𝑠} is the “motor vehicles” sector (𝑠) in 

China (𝑐) are country 𝑑 is the USA, then 𝛿{𝑠,𝑐},𝑑 is the sales of Chinese electric vehicles to the 

US (assuming, as in section 3.1, that the products targeted are the “electric vehicles”) divided 

by the total sales of Chinese motor vehicles to the USA. By working with bilateral product-level 

trade data, we also ensure that coefficients 𝛿{𝑠,𝑐},𝑑 will account for the specificities of the 

relationships across the supplying country-sector (𝑐, 𝑠) and the using country (𝑑).9  

(4) 

 

 

𝛿{𝑐,𝑠},𝑑 =
𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

{𝑐,𝑠}⟶𝑑

𝑇𝐷𝑡𝑜𝑡𝑎𝑙 
{𝑐,𝑠}⟶𝑑

 

- 𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑
{𝑐,𝑠}⟶𝑑

 = flows of targeted products from country-sector {𝑐, 𝑠} to country 𝑑 

- 𝑇𝐷𝑡𝑜𝑡𝑎𝑙 
{𝑐,𝑠}⟶𝑑

  = total flows (targeted and non-targeted products) 

The interest of using bilateral product-level trade data is to provide a necessary condition on 

the elements of Γ𝑍 as flows of targeted products should be consistent between the ICIO tables 

and the bilateral product-level trade data. This means that the proportion of targeted products 

in trade flows between a (supplying) country-sector {𝑐, 𝑠} and a (using) country 𝑑 in trade data 

should be the same in the ICIO tables.10 Formally, this translates into equation (5): the ratio 

computed with trade data (𝑇𝐷) must be the same when computed with the ICIO (𝑍). This 

equation sets conditions on the elements 𝛾{𝑐,𝑠},{𝑑,𝑡} of matrix Γ𝑍 as in equation (6) which is 

obtained by re-writing equation (5): 

- The left-hand term of equation (5) is 𝛿{𝑐,𝑠},𝑑 (see equation 4). 

- 𝑍𝑡𝑜𝑡𝑎𝑙 
{𝑐,𝑠}⟶𝑑

 is the amount of all products (targeted and non-targeted) sold by sector-

country {𝑠, 𝑐} to country 𝑑. It can be obtained by summing over 𝑍{𝑐,𝑠},{𝑑,𝑢} which are the 

amounts of products sold to each individual sector 𝑢.  

 
8  Domestic linkages (𝑐 = 𝑑) are not available through trade data. Following Borin et al. (2023), we assume that 

domestic relations are the weighted average of exporting relations. This means the domestic coefficient 𝛿{𝑐,𝑠},𝑐 

of country 𝑐 is the trade-weighted average of coefficients 𝛿{𝑐,𝑠},𝑒 across foreign partners 𝑒. 
9  As such bilateral product-level trade data is generally not available for services, our methodology works rather 

if targeted products are manufactured goods. This is the case in most of the recent trade-restrictive policies. 
10  We target the same proportion rather than the same amount because there could be discrepancies in the 

values of trade flows in ICIO and trade data, due to different data sources or ways to clean the data. 
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- 𝑍𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑
{𝑐,𝑠}⟶𝑑

 is the amount of targeted products sold by sector-country {𝑠, 𝑐} to country 𝑑: 

it is also obtained by summing over individual sectors 𝑢 in country 𝑑, with the 

multiplication by 𝛾{𝑐,𝑠},{𝑑,𝑢} to isolate targeted products. 

(5) 
𝑇𝐷𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

{𝑐,𝑠}⟶𝑑

𝑇𝐷𝑡𝑜𝑡𝑎𝑙 
{𝑐,𝑠}⟶𝑑

=
𝑍𝑡𝑎𝑟𝑔𝑒𝑡𝑒𝑑

{𝑐,𝑠}⟶𝑑

𝑍𝑡𝑜𝑡𝑎𝑙 
{𝑐,𝑠}⟶𝑑

 

(6) 𝛿{𝑐,𝑠},𝑑 =
∑ 𝛾{𝑐,𝑠},{𝑑,𝑢} ∙ 𝑍{𝑐,𝑠},{𝑑,𝑢}

𝑁
𝑢=1

∑ 𝑍{𝑐,𝑠},{𝑑,𝑢}
𝑁
𝑢=1

 

However, estimating elements 𝛾{𝑐,𝑠},{𝑑,𝑡} of matrix Γ𝑍 requires information on the using sector 

(𝑡), which the bilateral product-level trade data cannot provide.11 Bilateral product-level trade 

data tell the amount of any product that enters country 𝑑, but not which sectors inside country 

𝑑 are using it.12 To that end, we use the economic literature (Barry et. Al, 2015; Fally and 

Sayre, 2018) and industry reports to get details on the sectors that use the targeted products. 

For example, Fally and Sayre (2018) inform that “chromium and articles thereof” (HS code 

811299) are used for 62% in the sector “other non-metallic mineral products”, for 28% in 

“chemicals and chemical products”, for 5% in “fabricated metal products”, for 4% in “machinery 

and equipment, N.E.C.”, and for 1% in “motor vehicles”.13 Formally, this means we make 

assumptions 𝛼{𝑠,𝑐},{𝑡,𝑑} on the proportion of targeted products from country-sector {𝑐, 𝑠} that are 

used in country-sector {𝑑, 𝑡}. Based on the example above, this means we would set 

𝛼{𝑐,𝑠},{𝑑,𝑡} = 0.62 if 𝑠 is the sector that produces “chromium and articles thereof” and 𝑡 is the 

“other non-metallic mineral products” sector.14  

 
11  For instance, note the absence of subscript 𝑡 in equation (4).  
12  A simplifying hypothesis used in Borin et al. (2023), Attinasi et al. (2025b), and Conteduca et al. (2025) is that 

the share of targeted products is the same across sectors 𝑡 in country 𝑑, meaning 𝛾{𝑠,𝑐},{𝑡,𝑑} = 𝛿{𝑠,𝑐},𝑑 for any 

sector 𝑡. This allows to infer matrix Γ𝑍 based only on bilateral product-level trade data. But this assumption 
might be too naïve for highly specific products, such as green products explored in section 4. For example, 
in the case of “rare Earth”, one can suppose that they represent a portion goes to the “electronics” sector – 
where they are primarily employed – than in other using sectors. 

13  We generally seek assumptions on the sectoral users for each product at 6-digit level. 
14  This example also shows that assumptions on users of targeted products are independent of producing and 

using countries (𝑐 and 𝑑). This is due to the literature and industry reports not providing details by countries. 
Nevertheless, we end up with country-specific assumptions because the targeted sub-sector is generally 
composed of various HS6 products. In this case, we weight the product-level assumptions by the share of 
each product in trade flows between the two countries – hence computing user assumptions that are country-
specific and account for the specific products that are traded between the two countries. 
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Such assumptions on users impose further conditions on the elements of Γ𝑍 which account for 

the using sectors (𝑡). The definition of 𝛼{𝑐,𝑠},{𝑑,𝑡} means that equation (7) below is verified, where  

the numerator of the right-hand term (𝛾{𝑠,𝑐},{𝑡,𝑑} ∙ 𝑍{𝑠,𝑐},{𝑡,𝑑}) is the amount of targeted products 

sold by sector-country {𝑠, 𝑐} to sector-country {𝑡, 𝑑} and the denominator is the total amount of 

targeted products sold by sector-country {𝑠, 𝑐} to country 𝑑. It should be noted that setting an 

assumption on users in 𝛼{𝑠,𝑐},{𝑡,𝑑} is equivalent to imposing an assumption on the corresponding 

element of matrix Γ𝑍. Using equation (6), we can re-write equation (7) in the form of equation 

(8) where the element 𝛾{𝑐,𝑠},{𝑑,𝑡} is fully identified since: 

- 𝛼{𝑐,𝑠},{𝑑,𝑡} is known, based on the literature. 

- 𝑍{𝑐,𝑠},{𝑑,𝑢} are known from the matrix 𝑍 in the original ICIO. 

- 𝛿{𝑐,𝑠},𝑑 is obtained from bilateral product-level trade data. 

(7) 𝛼{𝑐,𝑠},{𝑑,𝑡} =
𝛾{𝑐,𝑠},{𝑑,𝑡} ∙ 𝑍{𝑐,𝑠},{𝑑,𝑡}

∑ 𝛾{𝑐,𝑠},{𝑑,𝑢} ∙ 𝑍{𝑐,𝑠},{𝑑,𝑢}
𝑁
𝑢=1

 

(8) 𝛾{𝑐,𝑠},{𝑑,𝑡} = 𝛼{𝑐,𝑠},{𝑑,𝑡} ×
𝛿{𝑐,𝑠},𝑑 ∙ ∑ 𝑍{𝑐,𝑠},{𝑑,𝑢}

𝑁
𝑢=1

𝑍{𝑐,𝑠},{𝑑,𝑡}
 

We however set assumptions only on a handful of using sectors, meaning that we still need to 

derive the elements 𝛾{𝑠,𝑐},{𝑡,𝑑} for sectors 𝑡 on which no assumptions are imposed. We do so 

by assuming coefficients 𝛾{𝑠,𝑐},{𝑡,𝑑} are the same across all sectors for which no assumptions 

are imposed – which we denote 𝛾{𝑠,𝑐},{∗,𝑑}. Equation (6) allows us to identify this value. 

Concretely, suppose we have imposed an assumption on using sector 𝑡1, meaning that we 

know coefficient 𝛾{𝑠,𝑐},{𝑡1,𝑑}. Using this information in equation (6) leads to identify 𝛾{𝑠,𝑐},{∗,𝑑} in 

equation (9). Together with the 𝛾 elements already obtained, this then provides all elements of 

matrix Γ𝑍 for the row of country-sector {𝑐, 𝑠} and the 𝑁 columns corresponding to country 𝑑 

(sector-country {1, 𝑑} to {𝑁, 𝑑}). Running this methodology across all country-sector {𝑐, 𝑠} and 

columns yields the full matrix Γ𝑍. 

(9) 𝛾{𝑠,𝑐},{∗,𝑑} =
𝛿{𝑠,𝑐},𝑑 ∙ ∑ 𝑍{𝑠,𝑐},{𝑢,𝑑}

𝑁
𝑢=1 − 𝛾{𝑠,𝑐},{𝑡1,𝑑} ∙ 𝑍{𝑠,𝑐},{𝑡1,𝑑}

∑ 𝑍{𝑠,𝑐},{𝑢,𝑑}𝑢≠𝑡1
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Multiplying element-by-element matrix Γ𝑍 and 𝑍 as in equation (1) provides the ICIO 𝑍Γ which 

singles out the amounts of targeted products. The ICIO 𝑍∆ for non-targeted products is 

obtained by simple difference as in equation (2). The very same methodology is applied for 

final products to get 𝑌Γ and 𝑌∆, respectively final demand of targeted and non-targeted 

products. The original ICIO is modified as in Figure 5 where the supply side of the original 

ICIO (i.e., the rows) is separated between targeted (ZΓ) and non-targeted (ZΔ) parts. 

Figure 5. ICIO table dis-aggregated for the supply side (rows) 

  

Source: authors. 

3.3 Dis-aggregating columns (use side of ICIO) 

The second step consists in decomposing the columns of the ICIO matrix (i.e., the use side). 

The methodology employed is very close to the one used for rows (section 3.2). We similarly 

build a matrix ΘZ which is multiplied element-by-element with 𝑍𝑟𝑜𝑤𝑠 = [ZΓ; ZΔ] (obtained after 

dis-aggregating the rows as in Figure 5) to provide a matrix 𝑍𝑟𝑜𝑤𝑠
Γ  whose elements indicate 

the amount of targeted products that are used. The ICIO matrix for non-targeted products 𝑍𝑟𝑜𝑤𝑠
∆  

is the difference between 𝑍𝑟𝑜𝑤𝑠 and the targeted matrix (𝑍𝑟𝑜𝑤𝑠
Γ ). One difference with section 

3.2 is that ΘZ is a 2 ∙ 𝐺𝑁 ×  𝐺𝑁 matrix since we have twice more rows now that the ICIO has 

been dis-aggregated on rows. A second difference is that there is no need for a matrix ΘY for 

final demand since columns of 𝑌 are households which do not need to be dis-aggregated. 
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Each element 𝜃{𝑐,𝑠},{𝑑,𝑡} of matrix ΘZ indicates the portion of intermediate inputs from the 

supplying country-sector {𝑐, 𝑠} towards the using country-sector {𝑑, 𝑡} that are used by the 

producers of targeted products. A concrete example for interpretating this element is: out of 

100 products supplied by Chinese producers of electric batteries (country-sector {𝑐, 𝑠}) to the 

US motor vehicles sector (country-sector {𝑑, 𝑡}), how many go to the US producers of electric 

vehicles (i.e., the targeted products within the motor vehicles sector)? 

As was the case for rows, disaggregating columns relies on building the matrix ΘZ. We use the 

same methodology as in section 3.2 with two main differences: 

- Product-level bilateral trade data cannot be used to provide a condition. 

- The dis-aggregation considers the whole column at once, while for rows we ran the dis-

aggregation in 𝐺 different steps corresponding to the 𝐺 countries on the use side. 

As regards the first difference, a condition for columns is provided by the accounting relations 

on gross output. Gross outputs for the targeted sub-sector (XΓ) and the non-targeted sub-

sectors (XΔ) are known from the ICIO dis-aggregated for rows (Figure 5) by summing elements 

of the corresponding rows. As mentioned above, accounting relations in ICIO matrices means 

that this gross output should also match with the sum of the elements in the corresponding 

columns. This provides a condition on elements 𝜃{𝑐,𝑠},{𝑑,𝑡} along equation (10) where: 

- 𝑋{𝑑,𝑡}
Γ  is the gross output of the targeted sub-sector sector-country {𝑑, 𝑡}, obtained from 

the ICIO dis-aggregated for the rows. 𝑋{𝑡,𝑑}
∆  is gross output for non-targeted sub-sector. 

- 𝑉𝐴{𝑑,𝑡}
Γ  is the value-added of the targeted sub-sector of sector-country {𝑑, 𝑡}. For 

simplicity, we assume this is allocated proportionally to output as per equation (11).15 

(10) ∑ ∑ 𝜃{𝑐,𝑠},{𝑑,𝑡} ∙ 𝑍𝑟𝑜𝑤𝑠 {𝑐,𝑠},{𝑑,𝑡}

𝑁

𝑠=1

𝐺

𝑐=1

+ 𝑉𝐴{𝑑,𝑡}
Γ = 𝑋{𝑑,𝑡}

Γ  

 
15  A simplified assumption is to consider 𝜃{𝑐,𝑠},{𝑑,𝑡} = 𝑋{𝑑,𝑡}

Γ (𝑋{𝑑,𝑡}
Γ + 𝑋{𝑑,𝑡}

∆ )⁄     ∀(𝑐, 𝑠). This simplification is used in 

Borin et al. (2023), Attinasi et al. (2025b), and Conteduca et al. (2025) but means that the same proportion of 
inputs for producing targeted products and non-targeted products. As was the case for rows, this might not 
hold for very specific supply chains: for example, “electric batteries” might not be used in the same proportion 
by producers of electric vehicles (targeted) and producers of thermal vehicles (non-targeted). 
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(11) 𝑉𝐴{𝑑,𝑡}
Γ =

𝑋{𝑑,𝑡}
Γ

𝑋{𝑑,𝑡}
Γ + 𝑋{𝑑,𝑡}

∆
𝑉𝐴{𝑑,𝑡} 

As for rows, we set assumptions on a few coefficients 𝜃{𝑐,𝑠},{𝑑,𝑡} for which either the literature 

or industry reports provides information. For example, one can assume that two thirds of the 

production of electric batteries (country-sector {𝑐, 𝑠1}) is used by producers of electric vehicles 

(i.e., the targeted sub-sector of country-sector {𝑑, 𝑡1}). Practically, this means imposing that 

𝜃{𝑐,𝑠1},{𝑑,𝑡1} = 0.67. As was the case for rows, assumptions are available only on a few sectors. 

We then use equation (10) to derive 𝜃 elements for all other sectors, assuming they are the 

same across all sectors for which we have no assumptions. The only difference with rows is 

that equation (10) considers all countries at once – as shown by the summand on countries 𝑐 

– while the equivalent condition for rows (equation 6) was limited to one receiving country (𝑑).  

This provides matrix ΘΓ from which we get the ICIO matrix 𝑍𝑟𝑜𝑤𝑠
Γ  of flows of targeted products, 

as well as the ICIO matrix 𝑍𝑟𝑜𝑤𝑠
∆  for flows of non-targeted products. Doing so provides a fully 

dis-aggregated ICIO as in Figure 6 where both supply and use sides of the original ICIO are 

separated between targeted and non-targeted sub-sectors. Figure 6 further decomposes 

𝑍𝑟𝑜𝑤𝑠
Γ  into 𝑍ΓΓ, which accounts for linkages between targeted sub-sectors on both supply and 

use sides, and 𝑍Γ∆, which accounts for linkages between a supplying targeted sub-sector 

towards a using non-targeted sector. Conversely, 𝑍∆∆ and 𝑍∆Γ decompose 𝑍𝑟𝑜𝑤𝑠
∆ . 
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Figure 6. Final dis-aggregated ICIO on both supply (rows) and use (columns) side 

  

Source: authors. 

 

 

4. An application to green industrial policies 

4.1 Identifying green sectors  

To design a scenario of trade fragmentation affecting green sectors, the first task consists in 

identifying green products at HS6 level. We do so by relying on two complementary sources. 

The first is the list of products that were targeted in the US Inflation Reduction Act of 2022. It 

provides 92 products at a highly granular level, such as “Turbines; hydraulic turbines and water 

wheels, of a power not exceeding 1000kW” (HS 841011) or “Poly(ethylene terephthalate); in 

primary forms, having a viscosity of 78ml/g or higher” (HS 390769). We complement this by 

the list of EU critical dependencies from which we isolate 17 products related to the green 

transition – and that were not in the IRA list. Finally, we add 20 products to cover some green 

products that were not included in the two lists above, notably for hydraulic power generation 

and heat pumps. The detailed list of 129 products is available in Table A3 in Appendix A. 

For tractability in the Baqaee-Farhi model, we merge these products into 7 homogenous sub-

groups in terms of sectoral classification and product class. They are “mined rare earths”, 

“processed rare earths”, “green-related chemicals”, “mechanical renewable-energy 
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components”, “electric batteries”, “electrical renewable-energy components”, and “electric 

vehicles”. This accounts for the entire supply chain of green products, from very upstream 

(mined rare Earth) to very downstream (electric vehicles). To represent the changes in 

electricity consumption, we also add an eight sub-sector “green electricity” (i.e., that is 

produced from renewables) which is obtained by dis-aggregating the utilities sector in the ICIO 

matrix.16 

4.2 Accounting for green transition 

Another limitation is that the available ICIO tables reflect the state of value chains with a 

significant lag – typically around five years.17. However, green product markets have grown 

rapidly and are expected to evolve even more dramatically in the near future. For this reason, 

we simulate growth in green sectors to account for future sectoral linkages.  

For this, we rely on the Leontief inverse matrix that links final demand (𝑌) and output (𝑋) as in 

equation (12). This relationship comes from the accounting relation on supply side of the ICIO: 

when summing rows as in Figure 4, 𝑍 +  𝑌 =  𝑋. We then construct a matrix of technical 

coefficients 𝐴 by dividing each row of 𝑍 by output (𝑋).18 It follows that 𝑍 =  𝐴𝑋, and therefore 

𝐴𝑋 +  𝑌 =  𝑋. Re-writing this equation provides equation (14) where 𝐵 = (𝐼 − 𝐴)−1 is the 

Leontief inverse matrix. 

(12) 𝑋 = 𝐵𝑌 

We obtain a future ICIO by applying assumptions from the International Energy Agency (IEA) 

as regards the final demand for green products and the production of green electricity by 2030. 

Detailed assumptions are provided in Appendix B. We proceed in two steps. 

- The first step consists in reflecting the growth of the final demand of green products by 

2030, through a modification of 𝑌. This is done by simply applying the IEA assumptions 

on the corresponding countries: for example, if the IEA assumes that demand for 

 
16  For this dis-aggregation, we apply a simpler method for dis-aggregating rows by using the ratio of green 

electricity in total utilities (see Table B3 in Appendix B). This is akin to Conteduca et al. (2025) and assumes 
implicitly that all using sectors are consuming green and non-green electricity in the same proportion. For the 
split on the column, we apply the method described in section 3.3 to effectively account for the fact that the 
inputs are different to produce green and non-green electricity. Concretely, our method ensures that the 
production of solar panels, wind turbines, and other renewable-energy equipment is primarily geared towards 
the green electricity sub-sector. 

17  In this study, the base ICIO table is the OECD TiVA table for year 2018. 
18  Each coefficient 𝐴𝑖,𝑗 of matrix 𝐴 can be interpreted as the quantity of inputs needed from the country-sector 𝑖 

to produce one unit of output in country-sector 𝑗. 
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electric vehicles will grow 10-fold in China, we multiply the corresponding cells in matrix 

𝑌 by 10.19 Doing so across all countries and green sectors provides an updated matrix 

of final demand 𝑌2030.20 

- The second step consists in reflecting changes in the use of renewable vs. non-

renewable electricity in the matrix of technical coefficients 𝐴. We rely on IEA 

assumptions for electricity mix in 2030. Thanks to the dis-aggregation of the ICIO along 

green sectors (see section 4.1), the ICIO contains sectors “green electricity” and “non-

green electricity”. To reflect the green transition, we impose that the ratio of green to 

non-green electricity follows IEA assumptions. Formally, elements 𝐴{𝑐,𝑠},{𝑑,𝑡} in matrix 𝐴 

are the quantity of inputs needed from country-sector {𝑐, 𝑠} to produce one unit of output 

in country-sector {𝑑, 𝑡}. We update these coefficients 𝐴{𝑐,𝑠},{𝑑,𝑡} for sector 𝑠 being “green 

electricity” and “non-green electricity” following equations (13) and (14) in which 

𝛽𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.,𝑐
2030  is the proportion of green electricity in the electricity mix in of country 𝑐 

derived from IEA scenarios. Doing so provides a matrix 𝐴2030 which accounts for a 

higher usage of green electricity by 2030.21 By changing 𝐴2030, it also implies that gross 

outputs of green and non-green electricity will change accordingly. Most notably, green 

electricity will have a higher output, leading to higher demand towards its suppliers of 

intermediate inputs, like producers of solar panels or wind turbines which will also see 

their output increase significantly. For instance, the world output of renewable-energy 

equipment (solar panels, wind turbines, etc.) increases by 118% after accounting for 

green transition. 

(13) 𝐴{𝑐,𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.},{𝑑,𝑡}
2030 = 𝛽𝑐,𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.

2030 (𝐴{𝑐,𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.},{𝑑,𝑡} + 𝐴{𝑐,𝑛𝑜𝑛−𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.},{𝑑,𝑡}) 

(14) 𝐴{𝑐,𝑛𝑜𝑛−𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.},{𝑑,𝑡}
2030 = (1 − 𝛽𝑐,𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.

2030 )(𝐴{𝑐,𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.},{𝑑,𝑡} + 𝐴{𝑐,𝑛𝑜𝑛−𝑔𝑟𝑒𝑒𝑛 𝑒𝑙𝑒𝑐.},{𝑑,𝑡}) 

In equation (12), we then replace 𝑌 by 𝑌2030 and take the Leontief inverse matrix 𝐵2030 

obtained by inverting 𝐼 − 𝐴2030. It provides 𝑋2030, the vector of gross output by 2030. This then 

 
19  In more details, we proceed in two steps because 𝑌 in equation (12) is a vector obtained as the row-wise sum 

of the full matrix 𝑌 (as represented in Figure 4). We first use the full matrix 𝑌 (with countries on the columns) 

to apply IEA country-specific assumptions. Second, we collapse it into a vector 𝑌 for use in equation (12). 
20  As assumptions are available only for green products, we do not modify the final demand in other sectors. 
21  Coefficients for green and non-green electricity in 𝐴2030 are obtained by a re-scaling of coefficients in 𝐴, this 

ensures that the ICIO remain consistent – notably that accounting relationships on the ICIO are still verified. 
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gives 𝑍2030 = 𝐴2030𝑋2030. With 𝑌2030 already constructed, it is then sufficient to derive value 

added 𝑉𝐴2030. 22 Hence, we get an ICIO matrix accounting for green transition by 2030.23 

4.3 Scenario design 

Rival countries are increasingly crafting industrial policies aimed at favouring their domestic 

production of green products. This includes trade-restrictive measures such as the 2022 US 

Inflation Reduction Act, whose domestic content requirements incentivize US consumers and 

producers to buy from North America, or the 2024 Section 301 tariffs set by the Biden 

administration which set higher import duties on green products such as electric vehicles and 

solar panels. At the same time, the EU is imposing anti-dumping tariffs on Chinese electric 

vehicles and is fostering its domestic production of green products through the European 

Green Deal and the Critical Raw Materials Act. China also provides ample industrial subsidies 

to green sectors (Bickenbach et al., 2024) which entail major spillovers (Attinasi et al., 2024). 

Against this background, we simulate a Green War scenario where two geopolitical blocs (East 

and West) impose trade barriers to imports of green products from the other bloc, while a third 

neutral group of countries continue to trade freely. Country allocation relies on Attinasi, Mancini 

et al. (2024):24 as shown in Figure 7, the West bloc includes advanced economies (e.g., US, 

EU, Japan) while the East bloc encompasses China, Russia, and their allies. Most emerging 

economies in Africa, Latin America, and South-East Asia are deemed neutral. Our scenario 

entails a 150% increase in non-tariff barriers on trade of the green products (detailed in section 

 
22  𝑉𝐴2030is obtained by using the accounting relationship on the columns of the ICIO (use side): value-added is 

gross output (𝑋2030) minus intermediate inputs (column-wise sum of 𝑍2030). The underlying assumption is that 
the proportion of value added per unit of output remains unchanged. 

23  Changes in final demand will affect the demand in intermediate inputs of producers because, as producers of 
final green goods will face a higher demand, they will mechanically increase their demand for intermediate 
green inputs. This means that in the end, our method modifies the full input-output table – both for intermediate 
and final products. Nevertheless, one limitation of our approach of exogenously changing final demand is that 
the proportion of inputs that each sector uses for production will remain the same – apart from the specific 
case of green electricity which is tackled in step 2. This would under-estimate the extent of the impact of the 
green transition on the economy. 

24  In Attinasi, Mancini et al. (2024), each country is allocated mechanically based on political alignment and 
economic ties. Contrary to most of the literature (e.g., Goes and Bekkers, 2022; Campos et al., 2023; Javorcik 
et al., 2024) the allocation does not rely only on voting patterns at the UN General Assembly but also on a 
broader set of additional metrics for political alignments (historical sanctions, military imports, official lending 
from China, security alliances, territorial disputes, public opinion about China and the US) and economic ties 
(FDI from and exports to China and the US, participation to the Belt and Road Initiative). More precisely, the 
geopolitical index relies on an index developed in the spirit of den Besten et al. (2023) for 63 countries covering 
87% of global GDP. Since this index is not available for all countries, the allocation of the remaining 166 
smallest countries covering 13% of global GDP relies on Capital Economics (2023). 
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4.1) between the two antagonist blocs, de facto halting trade flows of green products between 

blocs.25  

Following Attinasi et al. (2025a) Scenarios are run under two alternative model setups, a rigid 

and a flexible setup which differ by the degree of nominal rigidities. The rigid setup entails 

sticky wages and a reduced substitutability across suppliers, reflecting difficulties for producers 

to adjust swiftly their network of suppliers. Trade elasticities in this setup are calibrated based 

on Boehm et al. (2023). It reflects empirical findings in the literature that nominal wages are 

usually sticky (Le Bihan et al., 2012; Taylor, 1980) and supply chains inflexible (Barkema et 

al., 2019), at least in the short- to medium-term. The flexible setup allows for fully flexible wages 

and a higher substitutability of suppliers through larger trade elasticities from Fontagné et al. 

(2022). It represents effects as rigidities dissipate and the economy gradually adjusts.  

Figure 7. Country (mechanical) allocation  

(mechanical allocation based on political and economic linkages) 

 

Sources: Attinasi, Mancini et al. (2024) based on den Besten et al. (2023) and Capital Economics (2023) 

Notes: Countries are allocated mechanically to a geopolitical bloc based on political alignment and economic ties with China (East bloc) and the 
US (West bloc). 

 
25  A scenario in which trade between blocs is zeroed is in line with Campos et al. (2024) and Gopinath et al. 

(2024) providing evidence that trade between East and West has been almost non-existent during episodes 
of heightened geopolitical tensions (e.g., Cold War). 
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4.4 Economic impact 

Higher barriers to trade create an import price shock that affect imports and welfare. As a 

result, producers and consumers substitute away from more expensive products from the 

antagonist bloc towards products from either the same bloc or the neutral bloc, creating a 

positive demand shock for the latter. This is shown in Figure 8 (panel a) where trade between 

West and East decreases sharply by 15-20% while trading more within the same bloc and with 

the neutral bloc by 2 to 3%, suggesting that trade diversion takes place. In terms of welfare, 

both antagonist blocs would lose as trade barriers increase the prices of green products and 

reduce the trade opportunities for their domestic production (Figure 8, panel b). Welfare losses 

are higher in the East bloc where they reach 3% in the rigid set-up, while only amounting to -

2% in the West. This reflects the fact that the East bloc is reliant on the West for their exports 

of green products. In a rigid set-up, the Neutral bloc experiences a slight decrease in welfare 

that reflects the indirect effects from large welfare losses in the West and the East blocs. In a 

flexible set-up, welfare increases slightly in the Neutral bloc as the world economy adjusts and 

the absence of trade barriers on the Neutral bloc opens them additional trade opportunities.  

Figure 8. Higher losses in the East, trade diversion towards neutral countries 

(percentage deviation from steady state) 

a) Real imports 

 

  

b) Welfare (real GNE) 

 

Sources: Baqaee and Farhi (2024); Attinasi, Mancini et al. (2024); OECD TiVA; International Energy Agency; BACI; and authors’ calculations 
Notes: GNE = Gross National Expenditures. Non-linear impact simulated through 25 iterations of the log-linearized model. Panel a) includes 
intra-bloc imports. Panel a) relates to the flexible set-up. 

 
Due to model limitations, our estimates of a decoupling along green products likely represent 

a lower bound. Several other channels may be at play and amplify the losses such as impaired 

knowledge diffusion (Cai et al., 2022), financial amplification (Berthou et al., 2018), frictions to 
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migration and demography (Banerjee and Duflo, 2007), and macroeconomic uncertainty 

(Caldara et al., 2020). In addition, the substitution effects across green and brown sectors 

might be under-estimated as producers and consumers in the Baqaee-Farhi model can 

substitute freely across all products (e.g., faced with an increase of the relative price of electric 

vehicles, they can substitute it by textile). A more accurate representation should consider 

substitution at a more granular level (e.g., electric vehicles versus thermal cars, green 

electricity versus brown electricity). This would however be a substantial change to the model, 

and we leave it for future research. 

Splitting the IO table also allows to uncover sector-specific effects. World trade in the product 

groups targeted by the Green War declines by 10 to 20% (Figure 9, panel a) led by a drastic 

drop of trade between the two antagonist blocs. Most affected product groups are chemicals 

and renewable-energy equipment since these products were largely traded between East and 

West prior to fragmentation. As trade barriers are introduced, producer prices for these sectors 

increase (Figure 9, panel b). While prices rise across all green products, they rise more for 

products with downstream positions such as electric vehicles. This reflects the fact the Green 

War scenario targets the entire supply chain of green products, magnifying the impact on those 

products that depend on upstream green products.  

Figure 9. Sectoral impacts 

(percentage deviation from steady state) 

a) World trade 

 

  

b) World producer prices 

 

Sources: Baqaee and Farhi (2024); Attinasi, Mancini et al. (2024); OECD TiVA; International Energy Agency; BACI; and authors’ calculations 
Notes: “Renew. equip.” = renewable-energy equipment, mechanical (e.g., wind turbines) and electrical (e.g., solar panels). “Chem.” = 
chemicals for the green transition. Non-linear impact simulated through 25 iterations of the log-linearized model. In panel a) trade relates to 
real exports. Both panels relate to the “flexible” set-up. 
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4.5 Impact on greenhouse gas emissions 

The rise in prices of green goods – particularly those downstream the supply chain, closer to 

final consumption – weighs on their global demand, which falls by 2.2%. This decline is driven 

primarily by the Western bloc, where consumption drops by 9.5% due to reduced access to 

cheaper imports from Eastern economies. This suggests that, following the shock, the global 

economy may become more polluting, as higher costs and reduced access to affordable green 

goods discourage their consumption and lead to a shift back toward more emission-intensive 

alternatives.  

To quantify the impact on greenhouse gas emissions, we start by calculating the emission 

intensity of production at country-sector level. This is defined as the amount of CO2-equivalent 

emitted per US dollar of output produced, computed by dividing total emissions (from OECD; 

Yamano et al., 2024) by the gross output from our ICIO table, for each country-sector pair. We 

use 2018 emissions data to ensure consistency with the 2018 ICIO table throughout our 

analysis.26  

To project emission intensities to 2030, we exploit the strong correlation (nearly 80%) between 

a country-sector’s emission intensity (𝐸𝐼𝑐,𝑠) and the share of its inputs sourced from the "coke 

and refined petroleum products" sector (𝐴𝑐,𝑠). Specifically, we estimate the following regression 

on 2018 data, including country (𝛾𝑐) and sector (𝛾𝑠) fixed effects:27  

(15) 𝐸𝐼𝑐,𝑠
2018 = 𝛽0 + 𝛽1 ∙ 𝐴𝑐,𝑠

2018 + 𝛾𝑐 + 𝛾𝑠  + 𝜖𝑐,𝑠. 

Using this estimated relationship, we calculate projected emission intensities for 2030 based 

on the "coke and refined petroleum products" shares from pre- and post-shock ICIO tables. 

 
26  We rely on scope 1 emissions (caused directly by a firm) to avoid any double counting that could occur when 

using scope 2 emissions (caused indirectly or coming from the production of the energy purchased by the 
firm) or scope 3 emissions (caused by suppliers and consumers in the value chain). For green sectors 
constructed through our methodology – where OECD emissions data are not available – we assume their 
emission-intensity is the same as their parent sector. The only exception is the “green energy” sector 
(comprising wind, solar, and hydro energy) for which we assume zero emissions. To preserve consistency 
with total CO2 emissions in the aggregated “energy” sector (combining green non- and green sources), we 
infer the emission-intensity of the “non-green energy” sub-sector by dividing total CO2 emissions of the 
aggregated “energy” sector by the share of non-green energy in the sector’s output. 

27  The regression is estimated on a sample of approximately 680 country-sector pairs. The R² is 0.56, and the 

estimated coefficient 𝐴𝑐,𝑠 is positive and statistically significant at the 1% level. Results are available upon 

request.  
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We then multiply these intensities by gross output to estimate total production-based emissions 

in 2030.  

To account for households’ emissions, we use households’ final demand for thermal vehicles 

(obtained from the ICIO tables) as a proxy.28 We first calculate country-specific households’ 

emission-intensity by dividing household CO2-equivalent emissions – sourced from the OECD 

– for 2018 by household spending on thermal vehicles in the same year. We then apply this 

coefficient to household purchases of thermal vehicles in 2030 before and after the trade 

shock. Lastly, we compute total emissions by summing production and household components 

and derive pre- and post-shock emission intensities by dividing total emissions by global GDP. 

The East-West decoupling in green products would lead to higher CO2-equivalent emissions 

per US dollar of output, threatening hard-won progress toward global climate goals. According 

to our estimates, supply chain decoupling in green sectors reduces global energy efficiency, 

with each additional USD billion of output generating 544 more tonnes of CO2-equivalent 

emissions. This corresponds to roughly 50 million tonnes of additional emissions annually 

comparable to the yearly emissions of countries such as Bulgaria or Finland. Over two 

decades, the cumulative increase would approach one gigatonne of CO2-equivalent 

greenhouse gas emission, equivalent to adding a new emitter the size of Japan or Brazil to the 

global economy, according to OECD data. In the end, green supply chain decoupling not only 

affects macroeconomic outcomes but also undermine the energy efficiency of the global 

economy. 

4.6 Comparison with other methods 

Finally, we compare how results using our methodology differ from results using alternative 

methods. Figure 10 (panel a) depicts the welfare impact. The impact under our (baseline) 

method is larger than under the alternative where no growth is applied to the demand of green 

products. This is expected and somewhat mechanical as this alternative method do not 

account for the growth of the green sectors by 2030, hence the relative size of green sectors 

in the global economy is much smaller. Our (baseline) method also produces larger impacts 

than the alternative where no sector-specific user shares are used – as in Borin et al. (2023). 

 
28  Due to lack of sector-specific data on household emissions in the OECD database, we use consumption of 

thermal vehicles as a proxy for overall emission-intensity. This approach is supported by empirical literature 
showing a strong correlation between electric vehicle ownership and broader household energy-efficiency (Dai 
et al., 2023) notably as EVs owners are more likely to invest in green energy sources like solar panels (Sharda 
et al., 2024). 
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This is because our method allows to properly account for the sectoral linkages between green 

products, therefore enabling larger amplification effects through global production chains. The 

discrepancies are significant, with our baseline method multiplying the impact by around 2. As 

regards sectoral producer prices (Figure 10, panel b), impacts under our baseline method and 

the alternative “no sectoral user shares” are large, reflecting how accounting for sectoral inter-

linkages along the value chain of green products magnifies the effect on producer prices – 

notably for downstream products like EVs, batteries, and renewable-energy equipment. By 

contrast, differences between our baseline method and the “no growth” alternative are 

marginal. This is expected since the relative changes in producer prices should be little 

influenced by growing the IO matrix – as doing so will not affect the linkages between sectors, 

but only the size of these sectors in the total output.29 

Figure 10. Comparison with other approaches 

(percentage deviation from steady state) 

a) Welfare (real GNE) 

 

  

b) World producer prices 

 

Sources: Baqaee and Farhi (2024); Attinasi, Mancini, et al. (2024); OECD TiVA; International Energy Agency; BACI; and authors’ calculations 
Notes: “GNE” = Gross National Expenditures. Non-linear impact simulated through 25 iterations of the log-linearized model. “No sectoral user 
shares” refers to an alternative method for splitting rows without accounting for user shares, as in Borin et al. (2023). “No growth” refers to 
the alternative where no sectoral growth is applied to the IO (only the splitting). 

 
 

 
29  Differences between the baseline and the “no growth” alternative stems from the fact that not all sectors are 

grown by the same proportion when growing the IO matrix. It results that the weight of the different sectors in 
the proportion of inputs / outputs of the sectors will change, modifying to some extent the impact of changes 
in upstream suppliers and/or downstream consumers. 
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Conclusion 

We provide a general methodology to build highly granular ICIO tables, giving researchers a 

tool to enhance standard ICIO and isolate specific products of interest. We study the impact of 

dis-aggregation and find that granularity in ICIO tables matters even more when products 

cannot be easily substituted through trade with other countries (i.e. low trade elasticities) – as 

is the case for most goods essential to the green transition (e.g., electric batteries, rare earths). 

We then apply our method to study a hypothetical Green War scenario where East and West 

blocs stop trading green products. To do so, we also enhance the ICIO to account for the 

growth potential of green sectors by 2030, based on assumptions of the International Energy 

Agency. We show that a Green War lowers welfare by up to 3%, while leading to a significant 

(up to 20%) reduction of bilateral trade flows. Such decoupling in green supply chains also 

raises greenhouse gas emission intensity per unit of GDP, as reduced access to efficient and 

affordable low-carbon technologies leads to a less energy-efficient allocation of production and 

consumption across countries. 
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Appendix A: complementary tables and charts 

Table A1. List of sectors  

SECTORS IN THE STANDARD OECD TiVA ICIO TABLE 

Manufacturing 

Food products, beverages, and tobacco 

Textiles, textile products, leather, and footwear 

Wood and products of wood and cork 

Paper products and printing 

Coke and refined petroleum products 

Pharmaceuticals, medicinal chemical, and botanical products 

Chemicals and chemical products; rubber and plastics products 

Other non-metallic mineral products 

Basic metals  

Fabricated metal products 

Computer, electronic and optical equipment; electrical equipment 

Machinery and equipment, not elsewhere classified (n.e.c.) 

Motor vehicles, trailers, and semi-trailers 

Other transport equipment 

Manufacturing, n.e.c.; repair and installation of machinery and equipment 

Services 

Wholesale and retail trade; repair of motor vehicles 

Land transport and transport via pipelines 

Water transport 

Air transport 

Warehousing and support activities for transportation 

Postal and courier activities 

Accommodation and food service activities 

Publishing, audiovisual and broadcasting activities 

Telecommunications 

IT and other information services 

Financial and insurance activities 

Real estate activities 

Professional, scientific, and technical activities 

Administrative and support services 

Public administration and defence; compulsory social security 

Education 

Human health and social work activities 

Arts, entertainment, and recreation 

Other service activities 
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Activities of households as employers; activities of households for own use 

Others 

Agriculture, hunting, forestry 

Fishing and aquaculture 

Mining and quarrying, energy producing products 

Mining and quarrying, non-energy producing products 

Mining support service activities 

Electricity, gas, steam, and air conditioning supply 

Water supply; sewerage, waste management and remediation activities 

Construction 

ADDITIONAL GREEN SECTORS 

Mined rare earths 

Processed rare earths 

Chemicals for green transition 

Electric batteries 

Renewable-energy equipment (mechanical) 

Renewable-energy equipment (electrical) 

Electric vehicles 

Green electricity 

Sources: OECD and authors. 
Note: Some sectors (out of the 45 in the original OECD TiVA table) are aggregated for tractability reasons in the Baqaee-Farhi 
simulations. 
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Table A2. List of countries 

Country Share in world GDP PPP 

Argentina 0.75 

Australia 1.00 

Austria 0.37 

Belgium 0.45 

Brazil 2.34 

Brunei Darussalam 0.02 

Bulgaria 0.12 

Cambodia 0.06 

Canada 1.38 

Chile 0.34 

China, People’s Republic of 18.58 

Colombia 0.58 

Costa Rica 0.08 

Croatia 0.09 

Cyprus 0.03 

Czech Republic 0.32 

Denmark 0.25 

Estonia 0.04 

Finland 0.20 

France 2.28 

Germany 3.29 

Greece 0.24 

Hong Kong 0.32 

Hungary 0.25 

Iceland 0.02 

India 7.21 

Indonesia 2.49 

Ireland 0.41 

Israel 0.31 

Italy 1.87 

Japan 3.78 

Kazakhstan 0.37 
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Korea 1.71 

Lao, People’s Democratic Republic 0.04 

Latvia 0.05 

Lithuania 0.08 

Luxembourg 0.06 

Malaysia 0.68 

Malta 0.02 

Mexico 1.80 

Morocco 0.22 

Myanmar 0.03 

Netherlands 0.76 

New Zealand 0.16 

Norway 0.26 

Peru 0.32 

Philippines 0.71 

Poland 0.99 

Portugal 0.27 

Romania 0.45 

Russia 2.87 

Saudi Arabia 1.30 

Singapore 0.43 

Slovak Republic 0.13 

Slovenia 0.07 

South Africa 0.57 

Spain 1.37 

Sweden 0.42 

Switzerland 0.46 

Taiwan 1.00 

Thailand 0.91 

Tunisia 0.09 

Türkiye 2.05 

United Kingdom 2.33 

United States 15.47 

Viet Nam 0.80 
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Rest of the World 11.28 

Sources: OECD and authors. 
Note: Some countries (out of the 67 in the original OECD TiVA table) are aggregated for tractability reasons when running the 
Baqaee-Farhi model. 
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Table A3. List of green products at HS6 level 

Source HS code Description ISCI4 Green sector 

IRA 870220 

Vehicles; public transport type (carries 10 or more 
persons, including driver), with both compression-

ignition internal combustion piston engine (diesel or 
semi-diesel) and electric motor for propulsion, new 

or used 

D29 Electric vehicles 

IRA 870230 

Vehicles; public transport type (carries 10 or more 
persons, including driver), with both compression-

ignition internal combustion piston engine (diesel or 
semi-diesel) and electric motor for propulsion, new 

or used 

D29 Electric vehicles 

IRA 870240 
Vehicles; public transport type (carries 10 or more 
persons, including driver), with only electric motor 

for propulsion, new or used 
D29 Electric vehicles 

IRA 870340 

Vehicles; with both spark-ignition internal 
combustion reciprocating piston engine and electric 
motor for propulsion, incapable of being charged by 

plugging to external source of electric power 

D29 Electric vehicles 

IRA 870350 

Vehicles; with both compression-ignition internal 
combustion piston engine (diesel or semi-diesel) 

and electric motor for propulsion, incapable of being 
charged by plugging to external source of electric 

power 

D29 Electric vehicles 

IRA 870360 

Vehicles; with both spark-ignition internal 
combustion reciprocating piston engine and electric 
motor for propulsion, capable of being charged by 

plugging to external source of electric power 

D29 Electric vehicles 

IRA 870370 

Vehicles; with both compression-ignition internal 
combustion piston engine (diesel or semi-diesel) 

and electric motor for propulsion, capable of being 
charged by plugging to external source of electric 

power 

D29 Electric vehicles 

IRA 870380 Vehicles; with only electric motor for propulsion D29 Electric vehicles 

IRA 850650 Cells and batteries; primary, lithium D27 Electric batteries 

IRA 850680 
Cells and batteries; primary, (other than manganese 
dioxide, mercuric oxide, silver oxide, lithium or air-

zinc) 
D27 Electric batteries 

IRA 850690 Cells and batteries; primary, parts thereof D27 Electric batteries 

IRA 850710 
Electric accumulators; lead-acid, of a kind used for 

starting piston engines, including separators, 
whether or not rectangular (including square) 

D27 Electric batteries 

IRA 850760 
Electric accumulators; lithium-ion, including 

separators, whether or not rectangular (including 
square) 

D27 Electric batteries 
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IRA 850780 

Electric accumulators; other than lead-acid, nickel-
cadmium, nickel-iron, nickel-metal hydride and 
lithium-ion, including separators, whether or not 

rectangular (including square) 

D27 Electric batteries 

IRA 850790 
Electric accumulators; parts n.e.c. in heading no. 

8507 
D27 Electric batteries 

IRA 854519 
Carbon electrodes; with or without metal, of a kind 

used for other than furnaces 
D27 Electric batteries 

IRA 841919 
Heaters; instantaneous or storage water heaters, 
non-electric, other than instantaneous gas water 

heaters 
D27 

Renewable energy 
components 
(electrical) 

IRA 850231 
Electric generating sets; wind-powered, (excluding 
those with spark-ignition or compression-ignition 

internal combustion piston engines) 
D27 

Renewable energy 
components 
(electrical) 

IRA 850239 

Electric generating sets; (excluding those with 
spark-ignition or compression-ignition internal 
combustion piston engines), other than wind 

powered 

D27 
Renewable energy 

components 
(electrical) 

Other 850240 Electric rotary converters D27 
Renewable energy 

components 
(electrical) 

Other 850300 
Electric motors and generators; parts suitable for 

use solely or principally with the machines of 
heading no. 8501 or 8502 

D27 
Renewable energy 

components 
(electrical) 

Critical 853400 Circuits; printed D26 
Renewable energy 

components 
(electrical) 

IRA 854140 

Electrical apparatus; photosensitive, including 
photovoltaic cells, whether or not assembled in 
modules or made up into panels, light-emitting 

diodes (LED) 

D26 
Renewable energy 

components 
(electrical) 

IRA 854190 
Electrical apparatus; parts for diodes, transistors 

and similar semiconductor devices and 
photosensitive semiconductor devices 

D26 
Renewable energy 

components 
(electrical) 

IRA 841011 
Turbines; hydraulic turbines and water wheels, of a 

power not exceeding 1000kW 
D28 

Renewable energy 
components 
(mechanical) 

IRA 841012 
Turbines; hydraulic turbines and water wheels, of a 

power exceeding 1000kW but not exceeding 
10000kW 

D28 
Renewable energy 

components 
(mechanical) 

Other 841013 
Turbines; hydraulic turbines and water wheels, of a 

power exceeding 10000kW 
D28 

Renewable energy 
components 
(mechanical) 

Other 841090 
Turbines; parts of hydraulic turbines and water 

wheels, including regulators 
D28 

Renewable energy 
components 
(mechanical) 
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Other 841221 
Engines; hydraulic power engines and motors, 

linear acting (cylinders) 
D28 

Renewable energy 
components 
(mechanical) 

Other 841229 
Engines; hydraulic power engines and motors, other 

than linear acting (cylinders) 
D28 

Renewable energy 
components 
(mechanical) 

IRA 841290 
Engines; parts, for engines and motors of heading 

no. 8412 
D28 

Renewable energy 
components 
(mechanical) 

Other 841350 
Pumps; reciprocating positive displacement pumps, 

n.e.c. in heading no. 8413, for liquids 
D28 

Renewable energy 
components 
(mechanical) 

Other 841360 
Pumps; rotary positive displacement pumps, n.e.c. 

in heading no. 8413, for liquids 
D28 

Renewable energy 
components 
(mechanical) 

Other 841381 
Pumps and liquid elevators; n.e.c. in heading no. 

8413 
D28 

Renewable energy 
components 
(mechanical) 

Other 841391 Pumps; parts thereof D28 
Renewable energy 

components 
(mechanical) 

IRA 841861 
Heat pumps; other than air conditioning machines 

of heading no. 8415 
D28 

Renewable energy 
components 
(mechanical) 

IRA 841950 
Heat exchange units; not used for domestic 

purposes 
D28 

Renewable energy 
components 
(mechanical) 

IRA 280450 Boron; tellurium D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 280461 
Silicon; containing by weight not less than 99.99% 

of silicon 
D20 

Chemical products 
for EV batteries or 

solar panels 

Other 280469 
Silicon; containing by weight less than 99.99% of 

silicon 
D20 

Chemical products 
for EV batteries or 

solar panels 

IRA 280480 Arsenic D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 280519 
Alkali or alkali-earth metals; other than sodium and 

calcium 
D20 

Chemical products 
for EV batteries or 

solar panels 

IRA 280530 
Earth-metals, rare; scandium and yttrium, whether 

or not intermixed or interalloyed 
D20 

Chemical products 
for EV batteries or 

solar panels 
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Critical 281410 Ammonia; anhydrous D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 281910 Chromium trioxide D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 281990 
Chromium oxides and hydroxides; excluding 

chromium trioxide 
D20 

Chemical products 
for EV batteries or 

solar panels 

IRA 282010 Manganese dioxide D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 282090 Manganese oxides; excluding manganese dioxide D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 282200 
Cobalt oxides and hydroxides; commercial cobalt 

oxides 
D20 

Chemical products 
for EV batteries or 

solar panels 

IRA 282520 Lithium oxide and hydroxide D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 282530 Vanadium oxides and hydroxides D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 282560 Germanium oxides and zirconium dioxide D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 282580 Antimony oxides D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 283324 Sulphates; of nickel D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 283327 Sulphates; of barium D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 283691 Carbonates; lithium carbonate D20 
Chemical products 
for EV batteries or 

solar panels 

Critical 284011 
Borates; disodium tetraborate (refined borax), 

anhydrous 
D20 

Chemical products 
for EV batteries or 

solar panels 

Critical 284019 
Borates; disodium tetraborate (refined borax), other 

than anhydrous 
D20 

Chemical products 
for EV batteries or 

solar panels 
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IRA 284290 

Salts; of inorganic acids or peroxoacids, other than 
double or complex silicates, including 

aluminosilicates, whether or not chemically, 
excluding azides 

D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 284610 Cerium compounds D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 284690 
Compounds, inorganic or organic (excluding 

cerium), of rare-earth metals, of yttrium, scandium 
or of mixtures of these metals 

D20 
Chemical products 
for EV batteries or 

solar panels 

IRA 381800 
Chemical elements; doped for use in electronics, in 
the form of discs, wafers or similar forms; chemical 

compounds doped for use in electronics 
D20 

Chemical products 
for EV batteries or 

solar panels 

IRA 390761 
Poly(ethylene terephthalate); in primary forms, 

having a viscosity of 78ml/g or higher 
D20 

Chemical products 
for EV batteries or 

solar panels 

IRA 390769 
Poly(ethylene terephthalate); in primary forms, 

having a viscosity of less than 78ml/g 
D20 

Chemical products 
for EV batteries or 

solar panels 

Other 392010 

Plastics; plates, sheets, film, foil and strip (not self-
adhesive), of polymers of ethylene, non-cellular and 

not reinforced, laminated, supported or similarly 
combined with other materials 

D22 
Chemical products 
for EV batteries or 

solar panels 

IRA 392062 

Plastics; plates, sheets, film, foil and strip (not self-
adhesive), of poly(ethylene terephthalate), non-

cellular and not reinforced, laminated, supported or 
similarly combined with other materials 

D22 
Chemical products 
for EV batteries or 

solar panels 

IRA 392099 

Plastics; plates, sheets, film, foil and strip (not self-
adhesive), of plastics n.e.c. in heading no. 3920, 

non-cellular and not reinforced, laminated, 
supported or similarly combined with other materials 

D22 
Chemical products 
for EV batteries or 

solar panels 

Other 392111 
Plastics; plates, sheets, film, foil and strip, of 

polymers of styrene, cellular 
D22 

Chemical products 
for EV batteries or 

solar panels 

Other 392112 
Plastics; plates, sheets, film, foil and strip, of 

polymers of vinyl chloride, cellular 
D22 

Chemical products 
for EV batteries or 

solar panels 

Other 392113 
Plastics; plates, sheets, film, foil and strip, of 

polyurethanes, cellular 
D22 

Chemical products 
for EV batteries or 

solar panels 

Other 392114 
Plastics; plates, sheets, film, foil and strip, of 

regenerated cellulose, cellular 
D22 

Chemical products 
for EV batteries or 

solar panels 

Other 392119 
Plastics; plates, sheets, film, foil and strip, of 
plastics n.e.c. in heading no. 3921, cellular 

D22 
Chemical products 
for EV batteries or 

solar panels 
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Other 392190 
Plastics; plates, sheets, film, foil and strip, other 

than cellular 
D22 

Chemical products 
for EV batteries or 

solar panels 

IRA 262091 
Slag, ash and residues; (not from the manufacture 

of iron or steel), containing antimony, beryllium, 
cadmium, chromium or their mixtures 

D24 
Processed rare 

Earth 

IRA 711011 Metals; platinum, unwrought or in powder form D24 
Processed rare 

Earth 

IRA 711019 Metals; platinum, semi-manufactured D24 
Processed rare 

Earth 

IRA 711021 Metals; palladium, unwrought or in powder form D24 
Processed rare 

Earth 

IRA 711029 Metals; palladium, semi-manufactured D24 
Processed rare 

Earth 

IRA 711031 Metals; rhodium, unwrought or in powder form D24 
Processed rare 

Earth 

IRA 711039 Metals; rhodium, semi-manufactured D24 
Processed rare 

Earth 

IRA 711041 
Metals; iridium, osmium, ruthenium, unwrought or in 

powder form 
D24 

Processed rare 
Earth 

IRA 711049 
Metals; iridium, osmium, ruthenium, semi-

manufactured 
D24 

Processed rare 
Earth 

Other 720221 
Ferro-alloys; ferro-silicon, containing by weight 

more than 55% of silicon 
D24 

Processed rare 
Earth 

IRA 720241 
Ferro-alloys; ferro-chromium, containing by weight 

more than 4% of carbon 
D24 

Processed rare 
Earth 

IRA 720249 
Ferro-alloys; ferro-chromium, containing by weight 

4% or less of carbon 
D24 

Processed rare 
Earth 

IRA 720280 Ferro-alloys; ferro-tungsten and ferro-silico-tungsten D24 
Processed rare 

Earth 

IRA 720292 Ferro-alloys; ferro-vanadium D24 
Processed rare 

Earth 

IRA 720293 Ferro-alloys; ferro-niobium D24 
Processed rare 

Earth 

IRA 740200 
Copper; unrefined, copper anodes for electrolytic 

refining 
D24 

Processed rare 
Earth 

IRA 740311 
Copper; refined, unwrought, cathodes and sections 

of cathodes 
D24 

Processed rare 
Earth 

IRA 740500 Copper; master alloys of copper D24 
Processed rare 

Earth 

Critical 740620 Copper; powders of lamellar structure, flakes D24 
Processed rare 

Earth 
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Critical 740990 

Copper; plates, sheets and strip, of a thickness 
exceeding 0.15mm, of copper alloys (other than 
copper-zinc base alloys, copper-tin base alloys, 
copper-nickel base alloys or copper-nickel-zinc 

base alloys) 

D24 
Processed rare 

Earth 

Critical 741021 

Copper; foil, backed with paper, paperboard, 
plastics or similar backing material, of a thickness 
(excluding any backing) not exceeding 0.15mm, of 

refined copper 

D24 
Processed rare 

Earth 

Critical 750400 Nickel; powders and flakes D24 
Processed rare 

Earth 

Critical 750120 
Nickel; oxide sinters and other intermediate 

products of nickel metallurgy 
D24 

Processed rare 
Earth 

IRA 750210 Nickel; unwrought, not alloyed D24 
Processed rare 

Earth 

Critical 760320 Aluminium; powders of lamellar structure, flakes D24 
Processed rare 

Earth 

IRA 780191 
Lead; unwrought, unrefined, containing by weight 

antimony as the principal other element 
D24 

Processed rare 
Earth 

Critical 780199 
Lead; unwrought, unrefined, not containing by 
weight antimony as the principal other element 

D24 
Processed rare 

Earth 

IRA 810411 
Magnesium; unwrought, containing at least 99.8% 

by weight of magnesium 
D24 

Processed rare 
Earth 

Critical 810419 
Magnesium; unwrought, containing less than 99.8% 

by weight of magnesium 
D24 

Processed rare 
Earth 

Critical 810490 Magnesium; articles n.e.c. in heading no. 8104 D24 
Processed rare 

Earth 

Critical 810820 Titanium; unwrought, powders D24 
Processed rare 

Earth 

IRA 810920 Zirconium; unwrought, powders D24 
Processed rare 

Earth 

IRA 811010 
Antimony and articles thereof; unwrought antimony, 

powders 
D24 

Processed rare 
Earth 

Critical 811100 
Manganese; articles thereof, including waste and 

scrap 
D24 

Processed rare 
Earth 

IRA 811212 
Beryllium and articles thereof; unwrought beryllium, 

powders 
D24 

Processed rare 
Earth 

IRA 811219 
Beryllium and articles thereof; wrought other than 

waste and scrap 
D24 

Processed rare 
Earth 

IRA 811221 
Chromium and articles thereof; unwrought 

chromium, powders 
D24 

Processed rare 
Earth 

IRA 811292 
Gallium, germanium, hafnium, indium, niobium 
(columbium), rhenium and vanadium; articles 

D24 
Processed rare 

Earth 
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thereof, unwrought, including waste and scrap, 
powders 

IRA 811299 

Gallium, germanium, hafnium, indium, niobium 
(columbium), rhenium and vanadium; articles 

thereof, other than unwrought including waste and 
scrap and powders 

D24 
Processed rare 

Earth 

IRA 250410 Graphite; natural, in powder or in flakes D08 Mined rare earth 

IRA 251110 Barium sulphate (barytes); natural D08 Mined rare earth 

Other 252921 
Fluorspar; containing by weight 97% or less of 

calcium fluoride 
D08 Mined rare earth 

IRA 252922 
Fluorspar; containing by weight more than 97% of 

calcium fluoride 
D08 Mined rare earth 

IRA 260200 

Manganese ores and concentrates, including 
ferruginous manganese ores and concentrates with 
a manganese content of 20% or more, calculated 

on the dry weight 

D07 Mined rare earth 

IRA 260400 Nickel ores and concentrates D07 Mined rare earth 

IRA 260500 Cobalt ores and concentrates D07 Mined rare earth 

Critical 260600 Aluminium ores and concentrates D07 Mined rare earth 

IRA 260800 Zinc ores and concentrates D07 Mined rare earth 

IRA 260900 Tin ores and concentrates D07 Mined rare earth 

IRA 261000 Chromium ores and concentrates D07 Mined rare earth 

IRA 261100 Tungsten ores and concentrates D07 Mined rare earth 

Critical 261390 
Molybdenum ores and concentrates; other than 

roasted 
D07 Mined rare earth 

IRA 261400 Titanium ores and concentrates D07 Mined rare earth 

IRA 261510 Zirconium ores and concentrates D07 Mined rare earth 

IRA 261590 
Niobium, tantalum, vanadium ores and 

concentrates 
D07 Mined rare earth 

IRA 261710 Antimony ores and concentrates D07 Mined rare earth 

Sources: US administration, European Commission, and authors. 
Note: HS (Harmonized commodity description and coding System) codes refer to the 2017 version. International Standard Industrial Classification 
of all economic activities (ISIC) codes refer to revision 4. 
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Appendix B: Assumptions on green transition 

Assumptions are based on International Energy Agency (IEA) scenarios. Tables B1 and B2 

presents assumptions as growth factor: i.e., a value of 3 means that final demand will be 3 

times higher in 2030 compared to now. 

B1. Demand of electric vehicles and electric batteries 

As assumptions for electric batteries are not directly available, we take the same as for electric 

vehicles. We derive them the number of electric vehicles projected to be sold in each country 

or region by 2030 under the “announced policies” scenario of the IEA’s Global EV Data 

Explorer, compared with 2020.30 We further multiply these sales by the ratio of electric vehicles 

sold in the “net zero” scenario of the IEA’s Net Zero by 2050.31 As projections in “net zero” are 

global – instead of by countries / regions in the “announced policies” – the same ratio is applied 

to every region. This provides growth factors in Table B1. 

Table B1. Growth of final demand in electric 
vehicles and batteries 

Country / region Growth factor 

European countries 10.6 

USA 40.1 

China 19.4 

Other countries 18.9 

B2. Demand of renewable-energy equipment 

We use similar assumptions for electrical (e.g., solar panels) and mechanical (e.g., wind 

turbines) components, as assumptions separating the two are not available. We derive them 

from the total capacity in renewables projected in each country or region by 2030 under the 

“accelerated case” of the IEA’s Renewables Data Explorer, compared with 2020.32 We further 

multiply these capacities to account for the “net zero” scenario of the IEA’s Net Zero by 2050. 

 
30  The “announced policy” scenario projects the growth of EV adoption based on current government policies 

and commitments, without any new or additional policy interventions.  
31  The “net zero by 2050” scenario assumes policies needed to achieve a balance between the amounts of 

greenhouse gases emitted into the atmosphere and removed from it. The ratio are world EV sales in 2030 
under the “net zero” (available here) on the world EV sales in 2030 under the “announced policy” scenario 
(available here). 

32  The “accelerated case” envisions a faster deployment of renewable energy technologies than currently 
planned, driven by enhanced policy support and technological advancements. 
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As projections in “net zero” are global – instead of by countries in the “accelerated case” – the 

same ratio is applied to every region.33 This provides growth factors in Table B2. 

Table B2. Growth of final demand of renewable-
energy equipment 

Country / region Growth factor 

Argentina 2.7 

Australia 4.8 

Belgium 3.2 

Brazil 3.2 

Canada 2.2 

China 5.1 

Denmark 4.1 

France 3.4 

Germany 3.7 

India 4.7 

Indonesia 4.4 

Italy 2.9 

Japan 2.8 

Korea 4.6 

Mexico 2.7 

Netherlands 6.5 

Philippines 4.4 

Poland 8.5 

Russia 2.0 

South Africa 5.6 

Spain 4.5 

Sweden 3.0 

Thailand 2.7 

Turkey 3.8 

UK 3.7 

USA 4.2 

Vietnam 3.6 

 
33  The ratio is the world capacity in 2030 under the “net zero” (available here) on the world capacity in 2030 

under the “accelerated case” (available here). 
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Other countries 4.1 

B3. Share of renewables in electricity 

We start from the share of renewables (hydro, wind, and solar) in energy consumption use in 

2020 from the IEA’s Modern Renewables page. As projections are not available by country, 

we use the world assumptions on the share of renewables in energy consumption under the 

“net zero” scenario: compared with world’s energy consumption in 2020, this provides a ratio 

of increase in the use of renewables. We apply this ratio to all countries, which provides the 

share of renewables in energy consumption projected in 2030 for individual countries.34 But 

we need to use this in ICIO table where the relevant sector (D35 in ISIC4) is not limited to 

electricity but includes all utilities (gas, steam, and air conditioning), so we rescale this share 

by the share of electricity in utilities. Using US BEA’s ICIO (which are granular enough to 

decompose utilities in its different constituents), electricity is found to account for 85% of 

utilities. Using the figures from 2020 and 2030 then provides assumptions of Table B3. 

Table B3. Share of renewable (solar, wind, hydro) in utilities 
consumption 

Country / region 2020 2030 

Argentina 0.115 0.212 

Australia 0.134 0.248 

Austria 0.442 0.808 

Belgium 0.152 0.280 

Brazil 0.574 0.808 

Bulgaria 0.260 0.480 

Cambodia 0.281 0.518 

Canada 0.295 0.543 

Chile 0.330 0.608 

China 0.137 0.253 

Colombia 0.287 0.529 

Costa Rica 0.426 0.784 

Croatia 0.400 0.737 

Cyprus 0.186 0.342 

 
34  For some countries with high shares of renewables, this can however push the share of renewables to 

unreachable values – we set a maximum of 95% to reflect this. 
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Czech Republic 0.210 0.386 

Denmark 0.491 0.808 

Estonia 0.494 0.808 

Finland 0.587 0.808 

France 0.208 0.384 

Germany 0.230 0.423 

Greece 0.248 0.457 

Hungary 0.182 0.336 

Iceland 0.808 0.808 

India 0.219 0.403 

Indonesia 0.161 0.297 

Ireland 0.169 0.311 

Israel 0.069 0.128 

Italy 0.231 0.425 

Japan 0.104 0.192 

Kazakhstan  0.022 0.041 

Korea 0.045 0.082 

Laos 0.297 0.546 

Latvia 0.541 0.808 

Lithuania 0.392 0.721 

Luxembourg 0.257 0.473 

Malaysia 0.072 0.133 

Malta 0.113 0.209 

Morocco 0.097 0.179 

Myanmar 0.080 0.147 

Mexico 0.152 0.281 

Netherlands 0.133 0.246 

New Zealand 0.354 0.651 

Norway 0.758 0.808 

Peru 0.238 0.438 

Philippines 0.128 0.235 

Poland 0.199 0.367 

Portugal 0.386 0.710 

Romania 0.297 0.547 
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Russia 0.046 0.085 

Singapore 0.011 0.021 

Slovakia 0.218 0.402 

Slovenia 0.277 0.510 

South Africa 0.048 0.089 

Spain 0.239 0.440 

Sweden 0.722 0.808 

Switzerland 0.326 0.600 

Taiwan 0.137 0.253 

Thailand 0.212 0.391 

Turkey 0.169 0.312 

UK 0.167 0.307 

USA 0.138 0.254 

Vietnam 0.196 0.361 

Other countries 0.156 0.287 
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