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Abstract

We address the identification of low-frequency macroeconomic shocks, such as technology,

in Structural Vector Autoregressions. Whilst identification issues with long-run restrictions

are well documented, we demonstrate that the recent attempt to overcome said issues using

the Max-Share approach of Francis et al. (2014) and Barsky and Sims (2011) has its own

shortcomings, primarily that they are vulnerable to bias from confounding non-technology

shocks, although less so than long-run specifications. We offer a new spectral methodology

to improve empirical identification. This new preferred methodology offers equivalent or

improved identification in a wide range of data generating processes and when applied to US

data. Our findings on the bias generated by confounding shocks also importantly extends to

the identification of dominant business-cycle shocks, which will be a combination of shocks

rather than a single structural driver. This can result in a mis-characterization of the business

cycle anatomy.

Keywords: Identification, Long-Horizon and Business-Cycle Shocks, Confounding Shocks.

JEL classification: C11, C30, E32

ECB Working Paper Series No 2534 / April 2021 1



Non-technical summary

Structural Vector Autoregressions (SVARs) have increasingly been used to understand the dom-

inant drivers of both business-cycle and long-term fluctuations in the macroeconomy. Under-

standing these drivers can provide useful insights into important questions, such as whether

long-term productivity improvements come at the short-term cost of lower employment, or

whether the business cycle is predominantly driven by demand-side or supply-side factors.

This paper notes several theoretical shortcomings of existing SVAR identifications of dominant

drivers of business cycle and long-run economic fluctuations. This paper documents the biases

that can be introduced into the long-run and variance-maximizing methodologies by confound-

ing shocks, i.e. shocks other than the target of interest. Three alternative SVAR identifications

are proposed to deal with confounding shocks with different frequency domain properties, two

of which are new (Limited Spectral and NAMS). For identifying long-run shocks such as new

technological innovations, all proposed approaches and the Max-Share methodology are found to

be more robust to multiple sources of bias compared to the widely used ”long-run” identification

of technology shocks of Gaĺı (1999).

Two types of SVAR identifications in the frequency domain show a further reduction in estima-

tion bias when identifying long-term shocks such as technology in the presence of business-cycle

frequency confounding shocks. The newly developed Limited Spectral identification also reduces

lag-truncation bias compared to existing spectral methodologies to a degree. These sources of

bias are shown to exist in data for the United States. The Spectral identifications are the only

methods able to both robustly estimate the SVAR using multiple data transformations suggest-

ing that they are the most appropriate identification method of long-term economic drivers such

as technology shocks.

This paper also illustrates a key weakness of variance-maximizing SVAR identifications of domi-

nant business-cycle shocks, such as the spectral approach at business-cycle frequencies. We show

that the identified shock will be a variance-weighted combination of many different business-

cycle drivers. Using a simple model, we show that recent research that has identified a non-

inflationary “main business cycle” shock is likely to instead be capturing a combination of infla-

tionary New-Keynesian style demand-drivers and deflationary positive supply shocks. The paper

demonstrates that caution should be applied in interpreting the results of variance-maximizing

methods in the frequency domain.

ECB Working Paper Series No 2534 / April 2021 2



1 Introduction

In this paper we revisit the use of Structural Vector Autoregressions (hereafter, SVAR) to identify

dominant shocks, focusing on, but not limited to, its specific application to the identification of

technology shocks.1 We examine the recently proposed solutions to address known drawbacks

of the traditional long-run restriction by Francis et al. (2014) and Barsky and Sims (2011),

through medium-run variance-maximizing identifications, and unearth a key weakness of these

methodologies that have so far been under-explored but which have important consequences;

notably, that these methodologies are likely to capture a range of shocks in addition to the target

of interest. We suggest further modifications to the existing methods and point out the features

of the data generating process that will result in the choice of one modification over another.

In addition, these methods are also being used to identify dominant drivers of business-cycle

macroeconomic developments (Angeletos et al., 2020; Levchenko and Pandalai-Nayar, 2018).

We show that these applications can also suffer the same drawbacks due to confounding shocks,

resulting in misleading conclusions being drawn.

The use of SVARs to ‘look-through’ cyclical changes in productivity and isolate structural

developments, or changes in technology, can be traced back to Blanchard and Quah (1989).

In their approach, long-run restrictions are imposed in a structural VAR to separate the ef-

fects of temporary ‘demand’ and permanent ‘supply’ shocks on GDP. This methodology was

later adapted by Gaĺı (1999) to specifically identify technology shocks in a two-variable VAR

containing log-differences of productivity and hours worked.

Long-run restrictions have been criticized on two main grounds, one economic and the other

econometric: first, it is restrictive to assume that technology is the only shock that can affect

productivity in the long-run;2 and second, econometrically, that imposing long-run restrictions

on a finite sample and in the presence of non-technology shocks leads to biased and inefficient

estimates. It is the second strand of the literature we investigate more deeply in this paper,

notably the pitfalls of using alternative medium-run restrictions to identify long-run shocks. The

1We follow the literature and use ”technology” as a catchall phrase for the dominant long-run shock, while ”non-
technology” represents the shocks with more fleeting effects.

2Several strands of research have suggested other non-technology shocks that may also result in permanent effects
on labor productivity. Mertens and Ravn (2013) find that changes in taxation can have long-running effects of
productivity, which once controlled for, lead to different dynamics of macroeconomic variables in response to
identified technology shocks. Fisher (2006) separates productivity shocks into those that specifically apply to
investment goods (IST shocks), and neutral technology shocks that affect aggregate production. In addition,
Francis and Ramey (2005) and Uhlig (2004) have debated the extent to which the presence of these additional
shocks alters the literature’s findings on the impact of technology shocks on hours worked.
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medium-run identification strategy is more robust to estimation on finite samples, identifying

technology shocks as those which contribute the most to the forecast error variance decompo-

sition (FEVD) of labor productivity at the 10-year horizon (Francis et al., 2014). We hereafter

refer to this approach as the ‘Max-Share’ identification. This strategy has also been used to

identify technology news shocks, which reflect changes in the perception of future long-run tech-

nology developments (Barsky and Sims, 2011).

An important gap in the literature is how to identify technology shocks in the presence of

confounding shocks, a key feature of the data. One significant exception to this is Chari et al.

(2008), who find that long-run restrictions are only unbiased when technology shocks dominate

as a driver of output and non-technology shocks play a small role in a DSGE setting. In circum-

stances where non-technology shocks play a material role in driving macroeconomic variables,

long-run identifications will not only be biased, but will often show small and significant con-

fidence intervals around biased results — they will be ‘confidently wrong’ about the impact of

technology shocks. There is evidence that non-technology shocks are likely to play a larger role

in output fluctuations than commonly assumed, with estimates for the contribution of tech-

nology shocks to output ranging from just 2 to 63% of output variability (Gaĺı and Rabanal

(2005), Christiano et al. (2003), Chari et al. (2008)). The issues raised by Chari et al. (2008)

for long-run identifications have yet to be raised for newer alternatives.

We show that the Max-Share approach overcomes many of the weaknesses of long-run restric-

tions but can be biased by confounding non-technology shocks just as long-run identifications

can. We consider alternative approaches to sharpen the identification of technology shocks in

the presence of confounding shocks. The first, Non-Accumulated Max-Share (NAMS), shows a

lower degree of bias in the presence of low-frequency confounding non-technology shocks but is

susceptible to lag-truncation and short-sample bias. We next propose a spectral identification

approach whose rotation is in the frequency domain. Finally, we modify the spectral approach by

substituting the long-run variance-covariance matrix with one that can be reasonably obtained

in small samples. This preferred new methodologies is more robust to confounding shocks than

the Max-Share approach and is more robust to lag-truncation bias than existing methodologies

used to identify dominant shocks in the frequency domain (Angeletos et al., 2020; DiCecio and

Owyang, 2010).

We highlight that the influence of confounding shocks and lag-truncation bias can have very

different effects even between two standard and relatively small-scale DSGE models. As an
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alternative, we employ a simple two-variable model that provides greater transparency around

the data-generating process than a DSGE model and removes the influence of lag-truncation

bias to demonstrate how the impact of confounding shocks can be dependent on their nature.

Our findings have important implications for the identification of dominant business-cycle

as well as long-run macroeconomic drivers. Variance-maximising identifications have recently

been used to deconstruct the anatomy of business cycles. Specifically, Angeletos et al. (2020)

applied a similar identification concept at business cycle frequencies in an effort to determine the

possibility of a single shock driving the real side of the economy with little inflationary impact, in

contrast to the standard New Keynesian paradigm. We argue that confounding issues are more

acute at business-cycle frequencies and demonstrate the challenges they pose in determining the

true business cycle anatomy.

The remainder of the paper is as follows: In section 2, we first revisit existing technology

identification methodologies, drawing attention to newly identified shortcomings of the Max-

Share and long-run approaches before outlining several proposed improvements. In section 3,

we then show the performance of each identification methodology in Monte Carlo simulations

on DSGE-generated data. We perform various experiments to identify the influence of varying

the importance of confounding shocks on each methodology, as well as the influence of short-

sample and lag-length limitations. In section 4, we simplify the data generating process by

using a simple 2-variable model to isolate the effects of different types of confounding shocks:

whether they drive low or business-cycle fluctuations in the data. This simplified model does

not have an ∞-representation, removing the influence of lag-truncation bias. In section 5, we

then take each specification to data for the United States, assessing which sources of bias are

likely impacting the identifications. Finally, we switch focus to demonstrate how confounding

shocks paint a different anatomical picture of business-cycle drivers than that proposed by recent

macroeconomic literature.

2 Empirical Approaches

In this section, we briefly revisit the standard long-run and Max-Share identification of a tech-

nology shock. The potential for the Max-Share approach to be contaminated by other non-

technology shocks is then explained, before we detail three approaches that can reduce contam-

ination, depending on its source.
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2.1 Identifications and their Drawbacks

2.1.1 Long-Run Restrictions

We start with the simple and original approach that first introduced SVARs as a tool to dis-

entangle technology shocks from general macroeconomic fluctuations (Gaĺı, 1999). Isolating

the long-run components of labor productivity (prodt) and total hours worked (hourst), la-

beled LPLR and HoursLR, respectively, this methodology imposes the restriction that only the

technology shock can impact labor productivity in the long-run. LPLR

HoursLR

 =

∗ 0

∗ ∗


 εtech.

εnon−tech.

 (1)

Assuming the structural AR matrix polynomial,

A (L) = I2 −A1L−A2L
2 . . .−ApLp (2)

The long-run counterpart is therefore,

A (1) = I2 −A1 −A2 . . .−Ap (3)

In a stationary VAR containing the log-difference series of productivity and hours, the long-

run effect of the technology shock on growth will dissipate. The long run impact of each shock

on the level of the target variable can be written as:

 LPLR

HoursLR

 = A(1)−1

 εtech.

εnon−tech.

 = B(1)−1A−1
0

 εtech.

εnon−tec.

 =

Θ11 0

Θ21 Θ22

 εtech.

εnon−tech.

 (4)

where B(L) is the reduced-form VAR polynomial. Restricting the loading of the non-technology

shock onto productivity to be zero can be accomplished by ensuring the long-run impact matrix

is lower triangular. This is accomplished by solving for A−1
0 as follows:

A−1
0 = B(1)chol[B (1)−1 ΣuB(1)−1′] (5)

Where Σu is the reduced-form variance-covariance matrix.
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2.1.2 Max-Share

Long-run restrictions have come under fire for short-sample estimation problems and overly

restrictive assumptions. The Max-Share identification instead assumes that technology shocks

are the dominant driver of productivity around the 10-year horizon. In this identification, the

technology shock is that which drives the largest proportion of the forecast error variance of

labor productivity at this horizon, as in (Francis et al., 2014). When employing Max-Share one

has to be cognizant of the fact that at long horizons there are (cumulative) errors in the MA

coefficients on which the identification rests. These errors can be sizeable as argued in Lemma

1 below.

Lemma 1 VARs can produce increasingly biased and uncertain impulse responses as the horizon

increases. A simple argument illustrates this issue: For

yt = φyt−1 + εt (6)

the jth MA coefficient (impulse response) is Ψj = φj. This is a convex function of φ so Jensen’s

Inequality implies that E(φ̂j) > [E(φ̂)]j. Even in cases where the OLS estimate of φ is biased

downward E(φ̂) < φ due to small-sample bias (Kilian, 1998), the implied estimate of Ψj could

be biased upward E(φ̂j) > φj. As j gets large this bias can become enormous. Therefore, placing

restrictions at long(er) or infinite horizons can lead to severely biased impulse responses. In

addition, the uncertainty around estimates of Ψj will increase exponentially as the time horizon

of interest, j, increases. The function for the variance of the estimates for Ψj is again an

increasing function of j, E( 1
N

∑N
i [φ̂ji − [E(φ̂)]j ]2), again due to Jensen’s inequality.

Francis et al. (2014) surmise that 10 years is longer than the period over which the business

cycle occurs (typically assumed to be 2-8 years), but short enough to reduce challenges related

to estimation on a finite sample. This restriction is imposed in a VAR containing productivity,

hours, consumption and investment as a share of GDP. The forecast error at horizon k can be

written:

yt+k − ŷt+k =

k−1∑
τ=0

Dτut+k−τ (7)

Where D is a matrix of moving average coefficients. By defining an orthonormal matrix A0
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with columns α, and ϕ as a selection vector (size 1×n), we find the shock j which maximizes

the contribution to the total forecast error variance of variable i at horizon k

max f (α) =
ϕ′i

(∑k−1
τ=0D

ταα′Dτ ′
)
ϕi

ϕ′i

(∑k−1
τ=0D

τΣuDτ ′
)
ϕi

s.t. α′α = 1 (8)

Where ϕi is an indicator vector that selects the ith impulse response vector. The technol-

ogy shock at this maximized value is then: εtecht = α′chol (Σu)−1 ut. Following Uhlig (2003),

identifying the structural shock that maximizes the contribution to the forecast error variance

of productivity is solved by identifying the eigenvector associated with the maximum eigenvalue

of Vτ , where Vτ is the FEVD of the target variable based on reduced-form shocks, and the

denominator of f (α).

Vτ = ϕ′i

(
k−1∑
τ=0

DτΣuD
τ ′

)
ϕi (9)

2.2 Alternative Approaches

A drawback of the Max-Share approach is that in addition to capturing the long-run shock

of interest it also captures aspects of other shocks in the data. We propose three alternative

empirical approaches that offer reduced interference from these confounding shocks in different

circumstances.

We first formally demonstrate the confounding nature of other shocks when using the Max-

Share identification. We present the key equations of the eigenvalue-eigenvector problem and

refer the reader to Appendix Section 8.1 for further details.

Max-Share involves setting up the Lagrangian for Vτ :

L(α) = α′(Vτ )α− λ(α′α− 1)

whose first order conditions reduce to solving for the eigenvector associated with the largest

eigenvalue of Vτ

Vτα = λα
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For a simple two variable VAR with the true structural coefficients of the form:

A0ε =

Al11 Ah12

Al21 Ah22

εl
εh


where we use l and h to characterize the first shock as a low frequency (technology shock)

and the second as a high frequency (business cycle) shock. Given reduced form MA coefficient

counterparts, D, the solution for α at horizon k will be of the general form:3

α̃(k) =

Al11+
∑k
τ=1(D11

τ A
l
11+D12

τ A
l
21)

Ah12+
∑k
τ=1(D11

τ A
h
12+D12

τ A
h
22)

1


In an attempt to isolate the low frequency technology shock, we can clearly see the po-

tential contamination coming from the high frequency shock as α depends on the initial im-

pact of the respective shocks of the target variable (1) (
Al11
Ah12

), and their relative persistence:∑k
τ=1(D11

τ A
l
11+D12

τ A
l
21)∑k

τ=1(D11
τ A

h
12+D12

τ A
h
22)

. Essentially, the derived shock will not be of a ‘pure’ form, but rather a

combination of shocks with the ratio dependent on their importance in driving the forecast er-

ror variance at the chosen horizon; if the high frequency shock has a sizeable initial impact this

will contaminate the identification more the shorter the identification horizon, while too long a

horizon will cause more uncertainty in the parameters. As the true form of A0 is unobserved,

the extent of this contamination in empirical applications is also unknown.

In general, there is no closed form solution to the eigenvalue-eigenvector problem and the

above expression is for an extremely special case where such a solution exists.4 However, we con-

sider this illustrative as the more complicated solution will exhibit the features of this restrictive

expression.

2.2.1 Non-Accumulated Max-Share (NAMS)

The standard Max-Share approach takes cumulative forecast errors up to time k: see equation 7.

As indicated above, and expanded in the Appendix, we show that there may be instances where

non-trivial proportions of the forecast error variance is driven by shocks of lower persistence

than the shock of interest.

The first methodology we propose will sharpen the identification of shocks with long-run

3To satisfy the unit length restriction we will need to further normalize this by the length of the eigenvector.
4For example, assuming the variance-covariance matrix is commutative at each horizon.
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impacts by reducing the weight given to less persistent processes than technology. For example,

a high volatility AR(1) process with a small AR coefficient is also a predominantly low-frequency

process, but has no meaningful lasting impact at the 10-year horizon. As an alternative to Max-

Share, we propose finding the maximum of the square of the impulse response functions at a

particular horizon k. Here we aim to find the shock which has the maximum effects at say

period 40, ignoring all the previous horizon shocks. At this horizon, it may be expected that the

effects of lower-persistence shocks will have dissipated. The NAMS approach is implemented in

a similar way to the Max-Share approach, by solving:

max f k (α) =
ϕ′i
(
Dk−1αα′Dk−1′)ϕi

ϕ′i (Dk−1ΣuDk−1′)ϕi
s.t. α′α = 1 (10)

Kurmann and Sims (2017) also advocate reducing the impact of less persistent shocks in the

Max-Share approach. In the Barsky and Sims (2011) identification, the forecast error variance

under consideration is ‘double-weighted’; the maximization is applied to the summed forecast

error variance from periods 1 to k (max
∑k

i=0 f i (α), compared to the Francis et al. (2014) ap-

proach of max f k (α)). Kurmann and Sims (2017) propose returning to the original identification

of Francis et al. (2014), which maximizes a single forecast error variance at horizon k, finding

that it helps sharpen the identification of technology news shocks. Our NAMS approach takes

this to its logical conclusion, further reducing the distortion caused by transitory shocks.5

2.2.2 Spectral Identification

The NAMS approach deals with contamination from low-persistence, low-frequency processes.

However, the Max-Share approach may also be contaminated by driving processes that occur at

business-cycle and higher frequencies. Where the amplitude of these shocks are (coincidentally)

high at the chosen target range (k), the NAMS approach may not fare well.

We investigate the use of identification in the frequency domain, which can maximize the

share of variance explained only at frequencies that are of interest, excluding those that are

not. Identifying technology shocks through restrictions that explain the majority of low (long-

term) frequency volatility of productivity is a novel approach. However, this methodology has

in the past been used to assess the types of shocks which drive the business cycle. For example,

5In addition, Uhlig (2004) suggests an identification in which non-technology shocks will have no effect after 10
years, such that technology shocks can be identified by a restriction such that only the technology shock has an
impact on productivity at that horizon. Our approach differs in that we do not exclude other shocks from having
an effect at this horizon, and instead look for the shock that dominates at 10-years.
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Angeletos et al. (2020) find that a single shock drives the majority of the variance of a range

of macroeconomic variables at business cycle frequencies. DiCecio and Owyang (2010) use the

spectral approach to conduct an identification of technology shocks that is similar to what we

propose in this article but do not evaluate its performance.6 We effectively apply a band-

pass filter using the reduced form coefficients of a VAR containing macroeconomic variables,

identifying the spectral density of the variables within a particular frequency band. We then

identify the technology shock by maximizing the variance of productivity explained at the desired

frequency.

The spectral density of series Y at frequency ω can be written as a Fourier transform of its

auto and cross covariances (γ) at lag τ :

SY Y (ω) =

∫ ∞
τ=−∞

γ (τ) e−iτω (11)

Therefore, once γ(τ) in known, the spectrum, SY Y (ω), can be straightforwardly calculated.

The reverse also holds. That is, knowing the spectrum, SY Y (ω), leads to an easy computation

of γ(τ) by using the inverse Fourier transform,

γ(τ) =

∫ π

−π
eiτωSY Y (ω)dω (12)

Setting τ = 0, gives the variance of the time series Y .

γ(0) =

∫ π

−π
SY Y (ω)dω (13)

This means that the variance of Y is the integral of the spectrum over all frequencies, −π <

ω < π. This further indicates that the spectrum decomposes the variance of Y into components

from non-overlapping frequencies. Therefore, similar to the Max-Share identification, spectral

analysis allows us to gauge the importance of cycles at different frequencies to the variance of the

series of interest. And importantly, we can remove unwanted frequencies from the maximization

problem.

To employ this methodology we first need to uncover a VAR representation of the spectral

density of Y. We start by writing the Wold representation of the VAR (assuming it is invertible):

6In addition, Christiano et al. (2006) find that by using a spectral estimator at frequency 0, Long-run restriction
estimates prove less biased following a MCMC assessment of VAR performance.
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Yt =
(
I −

(
B1L+B2L

2 + . . . BpL
p
))−1

ut = Dut (14)

By post-multiplying Yt by Yt−τ and summing across its lags (of τ periods), the series of auto

and cross covariances can be discretely approximated by:

∞∑
τ=−∞

γ (τ) =
∞∑

τ=−∞
EYtYt−τ = DΣuD

′ (15)

Then, by writing D
(
e−iτω

)
=
(
I −

(
B1Le

−iω +B2L
2e−i2ω + . . . BpL

pe−ipω
))−1

, the spec-

tral density of Y can be written as a function of the reduced-form VAR coefficients.

SY Y (ω) = D
(
e−iτω

)
ΣuD

(
eiτω

)′
=

∞∑
τ=−∞

γ (τ) e−iτω (16)

To assess the spectral density within a frequency band, the spectral power can be integrated

between the bounds of the frequencies of interest [ω , ω̄]

As in the case of the Max-Share approach, the shock which maximizes the contribution to the

variance of productivity over this band is the eigenvector associated with the largest eigenvalue

of the matrix
∫ ω̄
ω SY Y (ω). To identify technology, the band of interest is restricted to frequencies

below (longer-than) 10 years, to exclude business-cycle frequencies.

2.2.3 Limited-Horizon Spectral Identification

One criticism that can be leveled against the spectral identification approach is that the long-run

VAR representation used to calculate the spectrum of the endogenous variables may be biased

when estimated on a short sample of data and with limited lags.

Simulation exercises in section 3.2.2 demonstrate that biases in the impulse responses of long-

run restricted models get larger and larger with the response period, even where large numbers

of lags are included in the estimation. This is especially true for reasonably lagged VARs (10

lags or below; those typically estimated with macro-data). At shorter horizons the responses

are closer to the truth. Our proposal, therefore, is to use projections extending to 10 years (as

in the original Max-Share approach) rather than the long-run representation. This horizon is

long enough to capture the theoretical underpinning of the structural identification but short

enough to reduce the degree of ”lag-truncation” bias.

A “windowed” selection of autocorrelations is often used to estimate the spectrum of a series.
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The same principle can be used in the spectral VAR identification process, effectively applying

a truncated kernal estimation approach. For example, the infinite-MA representation, D(eiω)

can be replaced with a limited horizon series of impulse response coefficients.

Dk(e−iτω) =
k−1∑
τ=0

Dτe
−iτω (17)

The same process used in the standard spectral approach is also used to identify the shock

of interest. For example, identifying technology shocks as the dominant drivers of labor pro-

ductivity over frequencies below 10 years. Additionally, as will be shown subsequent sections,

in DSGE models with infinite-order representations, and seemingly the US data, short-samples

of data and a limited number of lags can result in a larger bias to identifications that rely on

the infinite-order MA representation. The Limited Spectral methodology, like the Max-Share,

is less susceptible to this bias.

3 DSGE Model Evaluation

Traditionally, SVARs seeking to extract an unobservable shock, such as technology, have been

evaluated on their performance using simulated data from a DSGE model (Barsky and Sims,

2011; Chari et al., 2009; Erceg et al., 2005; Francis et al., 2014). This is an intuitive exercise, given

that the true underlying shock is known by construction. In this section, we test our estimators

with two known data-generating processes, a New-Keynesian model and a Real Business Cycle

model. We argue that many of these tests have been performed using calibrations of these DSGE

models which fail to test for the influence of material confounding shocks needed to replicate

key features of US macroeconomic data. We later show that existing methodologies perform

poorly when these features are included in simulated data from a simple 2-variable model that

provides greater transparency over the data-generating process compared to a DSGE model.

Each VAR specification is first tested on a standard medium-scale New Keynesian model,

of the type proposed by Christiano et al. (2005), and used by Francis et al. (2014) and Barsky

and Sims (2011) to evaluate their respective implementations of the Max-Share identifications.7

This model contains features such as persistent consumption habits, investment adjustment

costs, capital utilization, and partial price and wage indexation (see Appendix 8.2). In addition,

7In the Barsky and Sims (2011) ‘news’ implementation of the Max-Share identification, an additional ‘news’ shock
is added to the standard medium-scale NK model, which affects technology with a lag of one period.
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we also test the SVAR identifications on the RBC model used in Chari et al. (2008).

3.1 New Keynesian and RBC Monte-Carlo DSGE Results

A standard shock calibration is used to test each VAR specification on both the New Keynesian

and RBC DSGE models. The first follows the calibration of Erceg et al. (2005), while the

second follows the baseline calibration of Chari et al. (2008). The results below are based

on 1000 simulations of each DSGE model, generating 250 observations after a burn-in of 100

periods. Each VAR is estimated via a Gibbs sampling procedure with flat priors, saving 1000

draws following a 500-period burn-in. The same procedure is used for all simulations throughout

the document.

For the New Keynesian simulation, a four-variable VAR is estimated using: the natural logs

of productivity, total hours worked, and the share of investment and consumption in GDP. For

the RBC model, a two-variable VAR is estimated on the log-level of productivity and hours

worked. For the long-run identification, log-differenced productivity is always used, as is stan-

dard. However, to demonstrate the effects of confounding shocks with different transformations

of the data, we estimate the other SVARs (Max Share, NAMs, and Spectral methods) with

productivity in both log-levels and log-differences.

Figure 1: IRF bias of technology shock on productivity, estimation on log-level of produc-
tivity: NK and RBC models

New Keynesian RBC

Note: Long-run estimation performed using labor productivity in log-differences.
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Labor productivity in levels: Figure 1 plots the biases of the impulse response of labor

productivity to a technology shock when productivity is specified in levels (except the Long-

Run SVAR). For both models, the Spectral, Limited Spectral, and Max-Share identifications

have similar performances, showing the least bias for the initial response periods. However,

their relative performance decays monotonically relative to NAMS. In both models NAMS has

relatively high initial bias but its rate of decay is slower than that of the other estimators.

The slower decay means that at longer horizons there is little distinction between the relative

performance of all the estimators. At earlier horizons, the Limited Spectral and Max-Share

identifications show slightly lower bias than the Spectral identification, which we will later

argue is due to lower susceptibility to lag-truncation bias.

Figure 2: IRF bias of technology shock on productivity, estimation on differenced produc-
tivity: NK and RBC models

New Keynesian RBC

Labor productivity in log-differences: In the NK model, the Long-Run identification,

estimated with productivity in log-differences, showed a lower degree of bias at medium to long

horizons than the other estimation methods, estimated using the level of log-productivity (see

left panel of Figure 1). However, when we estimate the models with productivity in differences

for all specifications, there are clear patterns that emerge with respect to the degree of bias (see

Figure 2). In both models, the Spectral, Limited Spectral and Max-Share again show similar

level of bias across the response horizons. In the NK model, each of these identification have

biases of the same sign and are best at recovering the true impulse responses of the DSGE
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models. However, in the RBC model, NAMS displays the least initial bias (in absolute value)

but quickly decays for medium to long horizons. The four remaining methods (Max-Share,

both Spectral, and Long-Run identifications) have similar absolute initial biases, negative for

long-run and positive for the others. After horizon 30 all four display the same bias, in sign and

magnitude.

Summary: The consistently high-performing SVARs in both simulations in the early pe-

riods of the IRF are the Max-Share, Spectral and Limited Spectral identifications. The shocks

uncovered by the VARs have a high correlation (over 0.9) with the true underlying technol-

ogy shock, corresponding to the low IRF bias for these specifications (Table 1). These three

identifications also show lower degrees of bias in estimations of the impact of technology on

hours-worked (Appendix 8.2). By period 30 of the IRF, the Max-Share, Spectral, Limited Spec-

tral, and Long-Run identifications show similar biases in both models, with the exception of

the Long-Run restriction in the New Keynesian case. When they are all estimated using labor

productivity growth, the three aforementioned identifications outperform the Long-Run identifi-

cation for at least the first 5-years of the response period. The NAMS specification has a higher

IRF bias than the Max-Share, both Spectral specifications, and the Long-Run identifications

in most cases. We surmise that this is mainly due to the fact that NAMS is estimated using

parameters only at horizon 40 when the errors in estimation would have accumulated to sizeable

degrees (see Lemma 1, and, as we will argue below, also due to the presence of lag-truncation

bias).

Table 1: Correlation of VAR-identified technology shocks with true DSGE-generated shock

Identification Max-Share Long-Run Spectral Limited Spectral NAMS

New Keynesian 0.90 0.85 0.90 0.90 0.77
(0.70, 0.96) (0.53, 0.96) (0.64, 0.96) (0.67, 0.96) (0.43, 0.95)

RBC 0.97 0.86 0.96 0.97 0.95
(0.86, 0.99) (0.74, 0.94) (0.84, 0.99) (0.86, 0.99) (0.80, 0.99)

Note: 5th and 95th percentile values shown in brackets.

The high performance of our estimators in levels in matching the true IRFs at early horizons

is likely to be in part due to the shock processes driving the DSGE model, and the degree to which

they drive the volatility of the simulated data (levels and differences). The highly persistent

technology shock in this and other similar DSGE models tends to drive the vast majority of

the variance of labor productivity. In this calibration, over 99% of the volatility of the level of
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labor productivity in both models is driven by the technology shock.8 Therefore, several of the

methodologies find a similar result given how insignificant the non-technology driving processes

are in the variation of productivity.

The high performance of said estimators when using labor productivity growth is likely due

to the technology shock lingering over time via the capital accumulation process. Notice that

the relative performance of the three highest performing estimators (Max-Share, Spectral and

Limited-Spectral) are even more pronounced in the NK DSGE model, where non-technology

shocks display significantly smaller initial impacts on labor productivity (and therefore growth

rates) than in the RBC specification (Figure 3). In contrast, the initial impact of the non-

technology shock is almost as large as technology in the RBC model, resulting in larger biases.

Figure 3: Productivity IRFs for all shocks in New Keynesian and RBC models

New Keynesian RBC

When applied to US data we find that, unlike in the DSGE models, the impulse response of

Max-Share differs significantly from those produced by the spectral methods when productivity is

specified in differences. Our explanation of this finding rests on the DSGE models not containing

the types of non-technology confounding factors as the data. This elucidates our earlier premise

that Max-Share has even more difficulty (than spectral methods) disentangling technology shocks

from persistent non-technology confounding shocks (see also section 4.1 for further illustration

of this point).9 Therefore, when the nature of the confounding shock contributes non-trivially to

8Based on re-simulating the model over 100,000 periods one shock at a time.
9See Sala (2015) who also estimate a New Keynesian DSGE model in the frequency domain. Also, Fernald (2007)
found significant low frequency components in US productivity growth.
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the dynamics of productivity the method used to identify technology becomes especially important.

Arguably, the standard DSGE specification does not adequately ’road-test’ the performance

of the VARs in a transparent way. In the following sections, we first examine VAR performance

in the event that larger confounding shocks drive a more material component of the data process

than assessed in traditional DSGE models. We address this issue by stripping away the complex-

ities of the transmission mechanisms of our DSGE models and examine the performances of our

SVAR estimators under a variety of non-technology confounding shocks in a simple two-variable

setting. However, before doing so we address two important criticisms by Chari et al. (2008)

(hereafter, CKM) levied against long-run identification using the RBC model, concerning the

size of confounding shocks (but not their nature) and the impact of lag-truncation bias.

3.2 Addressing the CKM Critique of SVARs

In this section, we directly address two issues raised by Chari et al. (2008) about long-run

identified SVARs: IRF bias with a varying importance of non-technology shocks, and IRF bias

when the true lag length is infinity and is not imposed in estimation (lag-truncation bias).

Chari et al. (2008) use the above-discussed RBC model to demonstrate the difficulties faced by

long-run restricted SVARs in capturing technology shocks as other non-technology confounding

shocks drive an increasing share of the variance in the model. We therefore test our proposed

identification methodologies against this known DGP with which long-run restrictions are shown

to have difficulty. We show that our new methodologies generally outperform the long-run

identification SVAR, and perform comparably with the Max-Share identification in this RBC

DSGE framework.

In this model, there is no advantage of using the new specifications above those offered by the

Max-Share approach. The reason is that the non-technology shock has low-frequency properties

(it is an AR(1) process), and therefore can confound the spectral as well as the Max-Share

identifications. However, we demonstrate that compared to the long-run restriction approach,

all other specifications show lower, or at least equal, degrees of bias. In subsequent sections,

we show that there are circumstances where labor productivity is influenced by other types of

confounding shocks where our new identifications outperform both the long-run and Max-Share

identifications. Therefore, in contrast to the findings of CKM, when using the right estimator,

SVARs can prove useful in identifying the impacts of technology shocks for a range of DGPs.

The RBC model is specified with a unit root for technology, but also a highly volatile and
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persistent non-technology shock τ , where it’s persistence ρl is 0.95 in the standard calibration.

Chari et al. (2008) note that two sources of bias exist for the long-run SVAR methodology:

non-technology shocks will increase IRF bias as they drive a larger proportion of the variance

of output; and lag-truncation bias, where limited VAR lags result in a bias due to the true

specification of the VAR having an ∞-representation.

3.2.1 Varying the Relative Importance of Structural Shocks

Turning to the first claim, the relative variance of the non-technology shock to the technology

shock is adjusted (
σ2
εlt
σ2
zt

) and the model is simulated 1000 for each ratio of variance, generating

a data sample of 180 periods for each relative variance combination.10 Each VAR is estimated

using 4 lags. The long-run SVAR is estimated with log hours specified as ht−αht−1, where α de-

termines the degree of quasi-differencing, as in CKM. This allows the VAR to be estimated with

total hours in both levels and a highly quasi-differenced form.11 All other SVAR specifications

use hours in levels.

This exercise has a direct link to the eigenvalue-eigenvector rotation of variance-maximizing

identifications. Recall the discussion in Section 2.2 where it was pointed out that success of

Max-Share rotation, from reduced form to structural space, depends on the relative importance

of the impact of the technology and non-technology shocks in driving the FEV at the targeted

horizon.

Productivity in Levels:

We draw the following conclusions from Figure 4:

• The long-run IRF for productivity is ‘confidently wrong’ (also demonstrated by Chari et al.

(2008)) when the non-technology shock generates over 50% of the variance of output in the

model in the quasi-differenced long-run specification. The specification with hours in levels

has the largest bias and confidence intervals of the remaining specifications. However, the

Max-Share and our new approaches correctly display uncertainty in the identification of

technology shocks, via wider error bands, as the non-technology shock variance increases.

See Christiano et al. (2007) for a discussion of large confidence intervals relative to the

size of the bias in the context of Chari et al. (2008).

10The standard Gali calibration used to create Figure 1 in Chari et al. (2008) is used.
11Two specifications are used, with hours in levels (α = 0) and hours with a high-degree of quasi-differencing

(α = 0.99).
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Figure 4: CKM: Impact coefficient bias on labor productivity IRF as proportion of output
driven by non-technology shock is varied

Note: The proportion of variance driven by the non-technology shock is calculated by simulating the model with

one shock at a time, and then comparing the variance of the HP-filtered series for output from each simulation,

as in CKM.

• The Max-Share, Limited-Spectral and NAMS approaches show smaller confidence bands

than the Spectral methodology. These specifications do not rely upon the infinite MA
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representation, but instead use a finite representation. Their error bands are therefore

smaller, reflecting a more efficient estimation.

• Our alternative methodologies show lower bias than the long-run identification as the non-

technology shock increases in size. However, the Max-Share identification is marginally

more efficient than the spectral approach, showing slightly less bias at all horizons. The

NAMS identification becomes more biased as the non-technology shock grows larger in

importance. Reducing the persistence of the non-technology shock relative to the CKM

specification reduces this bias however (Appendix 8.4).

Figure 5: CKM estimated on differenced productivity: Impact coefficient bias on labor
productivity IRF as proportion of output driven by non-technology shock is varied

Note: The proportion of variance driven by the non-technology shock is calculated by simulating the model with

one shock at a time, and then comparing the variance of the HP-filtered series for output from each simulation, as

in CKM. This chart shows the contribution of output variability to the level of labor productivity for consistency

with figure 4
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Productivity in Differences: In figure 5:

• The Max-Share and Spectral identifications show very similar degrees of bias to the highly

quasi-differenced long-run specification. However, in section 4.1, we show that over longer

horizons, beyond the initial impact periods, the Spectral approaches show considerably

lower biases relative to the long-run and Max-Share identifications.

• The NAMS approach incorrectly captures the non-technology shock to a high-degree and

a large number of draws show the effect on labor productivity falling close to zero. This

can be intuitively understood: the effect of the technology shock on labor productivity

growth is close to zero at the 10-year horizon, such that disentangling the two shocks is

difficult for this methodology. In section 5, this is found to be a feature of the US data.

3.2.2 Lag-Truncation Bias

In the second exercise, we examine the robustness of each methodology to lag-truncation bias.

This is the bias caused by estimating the VARs using a finite number of AR coefficients when the

true DSGE-generated data has an infinite-lag order. There are two main findings from running

each method on 100,000 simulated data points from the RBC model and varying the number of

lags used in the estimation (Figure 6).

• At low lag levels, alternate methods show lower initial bias relative to the long-run spec-

ification. Further out, at long horizons, the new specifications show a similar bias to the

long-run identifications.

• The NAMS and Spectral specifications continue to show more bias than the Limited Spec-

tral and Max-Share specification on impact. The Spectral methodology is dependent on

the long-run VAR representation, while the NAMS approach identifies the shock maximiz-

ing the variance at a long-term horizon (10-years), where the effects of lag-truncation bias

are larger than in earlier periods of the IRF.
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Figure 6: CKM: IRF bias as estimation lag-length is varied

Note: Estimation on 100,000 periods of data simulated using the CKM RBC model, varying the number of lags

used to estimate each SVAR. The relative variance of the technology and non-technology shocks are held constant,

at
σ2
non−technology

σ2
technology

= 0.64, as in CKM.
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4 An Illustrative Two Variable Data-Generating Process

Here we examine how the VARs perform when the data generating process is a more transparent

set of technology and non-technology shocks. It is useful to strip away the complexity of the

dynamics driven by the DSGE model so that we can clearly examine how different data processes

can affect the results.

To that end, a simple two-variable model is used to generate the data. Figure 7 provides a

stylized example of the different forms a traditional technology shock can take, from a persistent

AR(1) to a unit-root shock. We test both forms in the scenarios below. In contrast, non-

technology shocks to productivity, such as less persistent AR(1) and cyclical business-cycle-

related shocks, may also be in the data, driving a material proportion of the variance. In a second

simplifying assumption, the DGPs considered here do not have an infinite lag specification,

therefore we abstract from the issues associated with lag-truncation bias.

Figure 7: Stylized IRFs for technology shock to productivity and confounding shocks

4.1 The Case of Unit Root Technology Shocks

We start by testing the identification of technology shocks in a simplified two-variable model

where technology shocks take the form of a unit root process with a persistent growth component.

This allows us to replicate the slow-building effect of technology shocks on labor productivity as

in the DSGE models. This is also likely to be a key feature of the US data, as we will show. In

contrast to the DSGE models previously explored, the confounding non-technology shock will be
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both high-volatility, and high (-er) persistence. This will allow us to replicate sharply differing

results for the Max-Share and spectral methodologies that we find in US data.

A simple two-variable data process is generated for labor productivity (L) and hours (N).

Both processes are driven by a technology shock (εz
g
) and a non-technology shock (εb). The

two-variable model takes the form:

Lt = zlt + bt (18)

Nt = 0.7Nt−1 − 0.3Nt−2 − 0.3zl + 0.3bt (19)

zlt = zlt−1 + zgt (20)

zgt = ρzgz
g
t−1 + εz

g

t (21)

bt = ρb,1bt−1 + εbt (22)

The technology shock εz
g

t is a permanent shock to the level of productivity L, with persistent

effects on its growth rate. εbt provides a temporary impact on the level of productivity. We

choose an illustrative calibration where the non-technology shock has a higher volatility but

lower persistence than the technology shock (σb = 2, ρb = 0.3, σz
g

= 1). The parameter ρzg ,

which governs the persistence of the effect on productivity growth, is set to 0.8, a reasonable

value.12

Given that we are interested in the particular case of a shock process driving the growth rate

of productivity, we estimate each of the VARs in both levels and differences for productivity. In

the first case, where the VARs are estimated on the differenced labor productivity series (L),

the Spectral approaches show the lowest level of bias in their IRFs (Figure 8). In contrast, the

Max-Share and long-run identifications show very high-levels of bias, taking on many of the

properties of the non-technology shock.

To see why this is the case, observe that the differenced series L is the sum of the differenced

series zl and b (∆Lt = ∆zlt + ∆bt). The first term is simply the low frequency AR(1) process

∆zl = zgt = ρzgz
g
t−1 + εz

g

t

12Lindé (2008) finds the persistence parameter to be low (0.14) but the variance of zg to be high - he also finds the
model fit was also very good when ρzg was high but var(zg) was low.
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Figure 8: IRF bias where technology growth has a unit root

Differences estimation Levels estimation

Note: The long-run specification requires the productivity data to be estimated in log differences. The results
for the bias of the long-run specification in ’levels’ plot reports the estimation in log differences for comparison
purposes.

while the second reduces to

∆bt = (ρb − 1)bt−1 + εbt

As (ρb − 1) is negative, this second process is a mixture of high frequency and white noise

processes. This may contribute to the volatility of ∆L but does not have persistent low-frequency

effects. The Max-Share identification is, therefore, less capable of distinguishing between this

and the true persistent technology shock. The Spectral approaches assign most weight to the low-

frequency persistent shock, as does the NAMS approach, which ‘looks through’ the transitory

white noise and high-frequency process resulting from differencing b. However, it is clear that

the dominance of the technology shock in growth rates will fade as the persistence of the growth

shock, ρzg , falls. An exercise in which this parameter is reduced to 0.3 from 0.8 shows a severe

deterioration in performance for the spectral approaches, although they continue to have the

lowest bias on impact.

The ability of the Spectral and NAMS identifications to distinguish between these data

generating processes also enables them to more accurately estimate the proportion of forecast

error variance of productivity driven by the technology shock (Figure 9). When estimating the

VAR in levels, we find that all approaches have a similar performance with the exception of

the long-run restriction - which is always estimated in differences but shown for comparison
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Table 2: Correlation of VAR-identified shocks with true technology shock when
technology has a unit root

Identification Max-Share Long-Run Spectral Limited Spectral NAMS

Differenced 0.31 0.23 0.96 0.96 0.96
(0.10, 0.46) (-0.04, 0.63) (0.89, 0.98) (0.89, 0.98) (0.92, 0.98)

Levels 0.97 NA 0.97 0.97 0.97
(0.93, 0.99) NA (0.93, 0.99) (0.93, 0.99) (0.83, 0.99)

Note: The long-run specification requires the productivity data to be estimated in differences in both cases. 5th
and 95th percentiles shown in brackets.

Figure 9: Estimated FEVD where technology growth has a unit root

Differences estimation Levels estimation

Note: 5th and 95th percentiles in brackets

purposes with levels results - (Figure 9 and Table 2). This accuracy is driven by all approaches

accurately estimating the initial variance of the technology shock. However, the IRFs under all

approaches are less accurate relative to those estimated by the Spectral VARs on the differenced

data. Effectively, the additional dynamics in productivity growth driven by the technology shock

are obscured when estimating the VAR with the data in levels. As such, the IRFs prove less

persistent than the estimates of the Spectral and NAMS VARs on differenced productivity, and

further away from the true persistence of the shock.

4.2 The Case of Stationary Technology Shocks

In the unit root case, the confounding non-technology shocks simply took the form of a less

persistent, albeit also low-frequency shock. The form of the confounding shock was a secondary
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point, since the unit-root shock dominated the variance of observable variables, as in the New

Keynesian and RBC models under consideration. There will however be situations in which

the shock targeted by the econometrician is less clearly dominant in the DGP. This may occur

for some economies subject to large non-technology shocks, or even when the econometrician is

targeting shocks other than technology.

In this section, the model is further simplified so that the technology shock is no longer as

clearly dominant in driving the variance of the model, and instead takes the form of an AR(1)

process. The form of the confounding shock gains importance in these simulations. We now

allow our confounding non-technology shock to take two forms: a low-frequency shock of the

same form as the technology shock, but less persistent, and a second business-cycle frequency

process.

Again, a simple two-variable data process is generated for labor productivity (L) and hours

(N). Both processes are driven by a technology shock (εz) and a business-cycle shock (εb).

Lt = zt + bt (23)

Nt = 0.7Nt−1 − 0.3Nt−2 − 0.3zt + 0.3bt (24)

zt = 0.9zt−1 + εzt (25)

bt = ρb,1bt−1 + ρb,2bt−2 + εbt (26)

This simple process is calibrated to replicate some of the features of a more complex model,

while being more transparent. In the case of a technology shock, labor productivity rises persis-

tently, while hours-worked initially falls (as in the New Keynesian framework). The advantage

of this simple setup is that we can change the driving processes of the non-technology shock

through the ρb parameters and easily understand how this changes the properties of the data

and hence the estimation performance of the VAR specifications.

4.2.1 Motivating the Choice of Stochastic Processes

We choose our shock processes to examine two plausible scenarios in the detection of technology

shocks:

1. There are confounding low-frequency but less persistent processes in the data other than
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technology;

2. There are business cycle frequency processes in the data.

As described earlier, our NAMS approach has been designed to deal with the first case, while

the spectral identifications are targeted at the second. Before we turn to the simulations, we

briefly describe the specifications that can generate the two described processes. This includes

covering the frequency domain properties of AR(1) and AR(2) processes.

Our choice of driving processes is motivated by the following well-known spectral density

factoid. Consider the white noise process εt, with variance γ(0) = σ2 and autocovariance function

γ(h) = 0 for h 6= 0.

Therefore, the spectrum is

∫ π

−π
S(ω)dω = γ(0) = σ2 (27)

Now consider the AR(1) process vt = ρvt−1 + ε with autocovariance function γ(h) =

σ2ρ|h|/(1-ρ2). The associated spectrum is,

S(ω) =
σ2

1− 2ρ× cos(2πω) + ρ2
(28)

Notice that when ρ > 0 the spectrum is dominated by low-frequency shocks, and in the case

of negative autocorrelation, ρ < 0, the spectrum is dominated by high frequency components.13

This simple factoid shows that a specification of a simple AR(1) process for b allows us to

generate a confounding low-frequency process.14 A business cycle frequency shock requires an

AR(2) process.

We replicate a sinusoidal business-cycle shock process with a specific frequency (f) using the

following AR(2) process:

xt = 2cos(2πf)xt−1 − xt−2

Here we set f such that the shock process for b has a periodicity of 8-quarters (2 years).

13To see this, substitute ω for low values (low frequency), say 1/32, or high values, say 1/2.
14A negatively-signed AR coefficient would allow us to include a confounding high frequency shock. For a more

detailed discussion of the data-generating processes behind a range of spectral densities, see Medel (2014).
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In our application, to ensure the cyclical process degrades over time (and avoids a unit root),

we multiply both coefficients (ρb,1 and ρb,2) by 0.9. We also calibrate the variance of the shocks

to be different for a clear distinction between the driving processes. In both cases, the shock

standard deviations are calibrated so that εz, the technology shock, explains the majority (just

over 50%) of the FEVD at period 40. This allows us to demonstrate that even where the shock

of interest is the dominant shock, the application of the Max-Share identification will still result

in biased estimates.

The two calibrations are shown in Table 3.

Table 3: Shock process calibration for two-variable simulations

Parameter Case 1: Low-frequency AR(1) Case 2: Business frequency

ρb,1 0.3 1.27
ρb,2 0.0 -0.7
σb 2 0.7
σz 1 1

4.2.2 SVAR Performance

Case 1: low-frequency confounding shocks: In the presence of an additional low-frequency,

albeit less persistent shock, both the Spectral and NAMS identifications outperform the tradi-

tional Max-Share and long-run restriction approaches. The NAMS approach is least affected by

the confounding shock, consistent with its intended purpose.

As predicted, the IRF of the Max-Share identification is biased upwards by the higher-

variance shock b (Figure 10), even though the targeted shock z explains the majority of the

forecast error variance at the 10-year horizon. In the presence of confounding low-frequency

shocks (the less persistent AR(1) process), the NAMS approach shows the least IRF bias and

shows minimal bias in the estimation of the FEVD share of technology in productivity (Figure

11). This is to be expected: by design, the NAMS approach gives minimal weight to low-

persistence processes. The end result is a very high correlation between the estimated NAMS

technology shocks and the true underlying shocks (Table 4).

The spectral approaches also show less IRF bias than the Max-Share approach. This might

seem unintuitive at first, as the confounding shock is also a low-frequency process, like the

targeted technology shock. However, the lower persistence of the variable b relative to z lowers

its contribution to the variance at low frequencies, reducing the bias. Referring to equation 28,
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it is clear that the contribution of the process b to the variance of productivity at low frequencies

will be increasing in the size of the persistence parameter ρ.

Figure 10: IRF bias in the presence of low-frequency and business cycle shocks

Low-frequency confounding Business-frequency confounding

Note: Absolute bias of technology IRF on the presence of a confounding low, and a confounding business-cycle
non-technology shock, respectively.

Case 2: business-frequency confounding shocks: In the presence of the business-cycle

frequency confounding shock, the Spectral VAR specifications have a clear advantage. While

there is some evidence of contamination in the IRF (Figure 10), it is significantly below the

contamination in the Max-Share, NAMS and long-run approaches. The shocks uncovered by

the Spectral specifications also have a higher median correlation (0.97) with the true underlying

shock than the remaining VARs (Table 4).

Table 4: Correlation of VAR-identified shocks with true technology shock

Identification Max-Share Long-Run Spectral Limited Spectral NAMS

Low-frequency 0.71 0.71 0.92 0.92 0.97

(0.61, 0.80) (0.58, 0.84) (0.84, 0.97) (0.85, 0.97) (0.93, 0.99)

Business-frequency 0.71 0.63 0.97 0.98 0.18

(0.37, 0.92) (0.54, 0.71) (0.95, 0.99) (0.95, 0.99) (-0.01, 0.71)

Note: 5th and 95th percentiles in brackets.

In addition, the Spectral identifications are less prone to overstate the FEVD share of the
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technology shock (Figure 11). Both the long-run and Max-Share specifications are prone to

overstating the forecast error variance explained by the technology shock, capturing additional

variance from the business-cycle shock. In contrast, the NAMS approach initially understates

the contribution to the forecast error variance and has larger confidence bands than the spectral

approaches.

Figure 11: Estimated and true forecast error variance

Low-frequency confounding Business-frequency confounding

Note: Blue= true forecast error variance. Red= estimated median, 16th and 86th percentile error bands

Overall, in the presence of confounding business-cycle frequency shocks, the Spectral ap-

proaches have a clear advantage over the traditional Max-Share and Long-Run identification,

even where the technology shock dominates the forecast error variance at a standard target hori-

zon (10-years). Appendix 8.3.2 shows the impact of increasing the target horizon to 15 years,

finding that the results are robust to this change.

4.3 Summary of Identification Performance

In the case of technology taking the AR(1) form, the Spectral identifications have been shown to

perform best in the face of non-technology cyclical shocks, and also show less bias than the Max-

Share identification in the face of non-technology low-frequency shocks. However, the NAMS

identification most effectively abstracts from non-technology confounding low-frequency shocks.

In contrast, business cycle shocks can bias NAMS, in part depending on the amplitude of the

cycle of the confounding shock at the target horizon (k). These simple two-variable DGPs also

do not account for lag-truncation bias (they do not have an infinite-AR form), which was found
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to be a source of bias in the DSGE estimations for NAMS.

All identifications, with the exception of long-run restriction, identify technology well when

it takes a unit-root form, primarily as it will prove so dominant over confounding shocks. Where

technology takes the form of a persistent shock to growth, the spectral identifications show the

least bias when estimated on the productivity data in log-differences.

5 Application to US Data

We now apply each identification method actual data to gauge the types of bias that may arise in

real world applications. We find that when applied to the US data, each proposed new method-

ology offers qualitatively similar impulse responses (Figure 12). However, a closer examination

of the forecast error variance, the persistence of the IRFs, and the results of estimating the VAR

using labor productivity in log-differences are revealing about the likely presence of confounding

shocks.

The IRFs and forecast error variance decomposition suggest the presence of

lag-truncation bias

We use a 6-variable VAR with 4 lags.15 The VAR contains logged labor productivity (output

per hour), logged total hours worked per capita, the share of investment in total output (includ-

ing consumer durables and excluding government investment), the share of consumption in total

output (excluding consumer durables), PCE inflation, and the yield on the US 10-year treasury.

The VAR is estimated between 1953:Q2 and 2018:Q3, with the starting date constrained by the

availability of the 10-year treasury yield data (to avoid ZLB issues associated with short-term

rates). All data are from the FRED database produced by the Federal Reserve Bank of St.

Louis (see Appendix 8.5 for further details).

15Our results are robust to alternative lag specifications, given the associated problems highlighted by Canova et al.
(2010) and Chari et al. (2008) around the estimation of a process that may have an underlying representation of
an AR process with infinite lags. The relative degree of potential lag-truncation bias remains consistent across
specifications, as in the CKM exercise.
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Figure 12: IRFs from estimation on U.S. data productivity data in levels

Note: 16th and 86th percentile error bands. The long-run identification is estimated using differenced labor

productivity and hours worked per capita data. All other identifications use both variables in levels.

While the IRFs provide qualitatively similar results (Figure 12), the forecast error variance

decomposition (FEVD) and the initial impact shows important differences between the iden-

tifications. The Max-Share and Limited Spectral methods, which have been shown to be the

most robust to lag-truncation bias, have higher FEV shares in the initial period than all other

methods (Table 5). The Spectral, NAMS, and long-run specification have been shown to be

biased downward due to lag-truncation. Another possibility for the higher initial impact of the

Max-Share and Limited Spectral methods would be the presence of a confounding low-frequency

shock. However, this would not explain why the Spectral and Limited Spectral methods produce

different results.

There appears to be few confounding business-cycle frequency shocks in the productivity

levels data. This can be seen by the similarities between the Max-Share and Limited Spectral

FEVD identifications. One way of thinking about the relationship between the two method-
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ologies is that the limited spectral approach is simply a Fourier transform of the Max-Share

identification, with the additional feature of excluding certain frequencies. The forecast error

variance matrix with which the maximization takes place for each can be written as:

VMax−Share
τ =

k−1∑
τ=0

DτΣuD
τ ′ (29)

and

V L.Spectral
τ =

k−1∑
τ=0

Dτ
(
eiτω

)
ΣuD

τ
(
eiτω

)
′ (30)

Table 5: Proportion of labor productivity FEVD explained at horizon t in each
identification

Identification Max-Share Long-Run Spectral Limited Spectral NAMS

Levels: t=1 0.45 NA 0.31 0.44 0.29

Levels: t=20 0.89 NA 0.81 0.89 0.69

Levels: t=40 0.93 NA 0.84 0.92 0.83

Differences: t=1 0.99 0.16 0.36 0.35 0.13

Differences: t=20 0.40 0.56 0.92 0.92 0.11

Differences: t=40 0.32 0.64 0.94 0.94 0.13

Therefore, medium and high-frequency volatility must be a sufficiently small proportion of

the variance at this horizon so that the maximization problems are essentially equivalent. In

contrast, the growth rate of US productivity exhibits a wide range of frequencies driving its

spectral density, unlike the level, suggesting an estimation of the VAR with productivity in

log-differences will also be informative.

Spectral identifications best capture technology shocks with persistent effects on

productivity growth

When estimating the VARs in differences (Figure 13), the Spectral approaches show a more

persistent IRF than when estimated on the level of productivity, and a similar share of forecast

error variance explained of productivity to one another. This demonstrates similar circumstances

to the model-based scenario with simulated data in the case of technology taking the form of

a unit-root plus stochastic growth process (see Section 4.1). Furthermore, the Max-Share and
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NAMS approaches appear to be significantly confounded by non-technology influences. The

differenced spectral VARs are therefore likely producing the least biased IRFs for the response

of productivity to technology.

Figure 13: IRFs from estimation on labor productivity log-differences

Note: 16th and 86th percentile error bands

Only the spectral identifications produce consistent estimates when estimating

on data in levels and differences

Comparing the impulse responses across the two specifications (productivity estimated in

levels versus differences), shows that only the spectral estimators produce consistent impulse

responses in each case (the long-run identification is always estimated in differences). In response

to a positive technology shock, productivity, consumption, and investment rise, while hours,

inflation, and the long rate fall initially. The confidence bands around the spectral estimates are
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also tighter than those produced by the other methods. However, while the Max-Share impulses

are mainly consistent across levels and differences, there are disparities in the impulse of hours

and long rates: both hours and the long rates are negative when productivity enters the VAR in

log-levels and positive when estimated in differences. These results alongside the less persistent

productivity IRF suggest that non-technology factors, such as a New Keynesian demand shock,

have confounded the identified shock.

NAMS produces contradictory or non-informative impulse responses across all variables ex-

cept for consumption and investment when estimated on labor productivity in differences. Ad-

ditionally, the accompanying wide confidence bands of the difference specification precludes us

from drawing any concrete conclusions and again manifest themselves in the very low explained

FEVD (Table 5). This is to be expected, given the impact of a technology shock on productivity

growth after 10 years is understandably small and uncertain. Simulations in the unit-root case

also showed a weaker performance from NAMS relative to the spectral methods.

The Limited Spectral methodology is the most robust across specifications

In summary, the US data looks to give rise to lag-truncation bias and contain technology

shocks with persistent effects on productivity growth. The Limited Spectral estimator can

reliably handle this data generating process in both levels and differences for productivity. The

NAMS and Spectral approaches are less able to cope with the presence of lag-truncation bias

when productivity in log-levels is used in the VAR, although the Spectral approach works well

in log-differences, where lag-truncation bias is a smaller issue.

6 Detecting Cyclical Shocks: dissecting the business-cycle anatomy

The Max-Share and the Spectral VAR methodologies have been recently applied to finding

dominant business-cycle frequency shocks. For example, Angeletos et al. (2020) find a single

primary driver of multiple macroeconomic variables at business cycle frequencies. Levchenko

and Pandalai-Nayar (2018) use the Max-Share methodology to identify the impact of changes

in economic sentiment on US output.

We note that the same logic of confounding shocks will also apply in these cases. Most

notably, using the Max-Share and Spectral identifications to find the shock that maximizes the

forecast error variance or variance within a particular frequency band does not necessarily iden-
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tify a single structural shock. For example, Giannone et al. (2019), find a shock which maximizes

the variance of unemployment at business-cycle frequencies but note that this statistical-derived

identification will encompass a linear combination of structural shocks. We formalize this state-

ment in this paper, finding that the shock will encompass a combination of structural shocks

broadly in proportion to their relative contribution to the variance at that horizon or frequency

band. We propose that the same logic outlined in Appendix section 8.1 would also hold in the

case of targeting the shock which maximizes the variance within a business-cycle frequency band.

Take for example two structural shock drivers affecting 2 endogenous variables at business-cycle

frequencies ABC−1 and ABC−2, where ABC−1 drives the majority of the variance at these fre-

quencies. In the case where only these two drivers existed, column one of the identified rotation

matrix would weight the two shocks according to their contribution to the variance at the desired

frequency band ω and horizon k (in the Limited Spectral this would be 40 quarters and ∞ in

the standard Spectral approach). It would not simply ‘pick out’ the dominant shock.

q̃(k) =

ABC−1
11 +

∑k
τ=1(D11

τ (eiτω)ABC−1
11 +D12

τ (eiτω)ABC−1
21 )

ABC−2
12 +

∑k
l=1(D11

τ (eiτω)ABC−2
12 +D12

τ (eiτω)ABC−2
22 )

1


This will make it difficult to interpret IRFs of the identified shock in question, given they will

represent a combination of drivers with only an a priori understanding of their relative weights.

Furthermore, the variance of many macroeconomic drivers in the business-cycle frequency

domain are more prone to contamination than in the low-frequency range. For example, at

business-cycle frequencies a wide range of shocks influence real and nominal variables. The

competing effects of supply-side and demand-side influences may therefore be difficult to disen-

tangle. Using the Spectral methodology, Angeletos et al. (2020) argue that dominant business-

cycle drivers of real variables such as GDP, unemployment, and investment have very little

impact on inflation, therefore ruling out inflationary demand shocks of the standard New Key-

nesian variety as key drivers of the business cycle. Using the same VARs used to evaluate the

identification of technology in the US data, this finding can be confirmed. By targeting the

shock the maximizes the variance of GDP at business cycle frequencies (6-32 quarters), a shock

which boosts output by one percent in the short-run is found, but which results in inflation

rising by just 0.05 percentage points at its peak. In contrast, the shock that maximizes the

variance of inflation at business cycle frequencies has a more substantial impact on inflation

(-0.3 percentage points) but a smaller impact on output.
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Figure 14: Targeting Output and Inflation at Business-cycle Frequencies

Note: 16th and 86th percentile error bands. The first row shows impulse responses to the shock which maximises

the variance of output at business-cycle frequencies (6-32 quarters). The second targets inflation. The VAR

consists of US data on labor productivity, hours-worked, the investment to GDP ratio, the consumption to GDP

ratio, the consumption expenditure deflator (inflation), and the 10-year US treasury yield.

We argue that an alternative candidate explanation for the absence of a significant infla-

tionary impact from the main driver of output at business cycle frequencies is the presence of

competing demand and supply-side influences, which dull the response of inflation. Demand-side

drivers of output will cause inflation to rise, while supply-side drivers of output can cause output

to rise while reducing inflation (technology and markup shocks for example). The presence of

both types of shock in driving output will result in a hybrid IRF to inflation, consisting of a mix

of the effects of both shocks.

A simple New Keynesian model demonstrates how the Spectral methodology can produce

these results even in the case where inflationary demand shocks drive the majority of the variance

of output:

yt =
−1

σ
(Rt − Et[πt+1]) + Et[yt+1] + ηt (31)

πt = κMCt + βEt[πt+1] (32)
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MCt = (σ + χ)yt − (1 + χ)at (33)

Rt = (φt)yt + φππt (34)

Where yt is output, Rt is the nominal interest rate, πt is inflation, MC is marginal costs. ηt

represents a demand (preferences) shock, while at reflects a supply-side technology shock. σ is

the inter-temporal elasticity of substitution, χ is the Frisch elasticity of labor supply. κ is the

slope of the Phillips curve, and is a function of the probability of not being able to reset prices

each period (θ) and the discount rate (β) :κ = (1− θ)(1− βθ)/θ.

In this standard framework, there are two key drivers of fluctuations in output and inflation.

Let us suppose that these are transitory drivers, with sizable contributions to the business-cycle.

These shocks therefore follow auto-regressive processes with a coefficient of 0.7 on the shock’s

auto-regressive coefficients (at = 0.7at−1 + εa and ηt = 0.7ηt−1 + εη). Elasticities are set to 1

for simplicity (σ and χ) while the inflation aversion coefficient is set to 1.5 and the output gap

coefficient is set to 0.5 in the policy-rate equation. Shock variances are set at σ2
a = 0.004 and

σ2
η = 0.002, which results in the supply shock explaining roughly three quarters of the variance

of inflation, and the demand shock explaining roughly three-quarters of the variance of output.

Simulating the data for 250 periods and then separately identifying the dominant business-

cycle driver of output and inflation in a two variable VAR using the Spectral methodology

produces the postulated result. Despite the presence of clearly separate driving processes, the

IRFs for inflation end up as a mixture between the supply and demand shock IRFs. This provides

the appearance of a subdued response of inflation to a demand shock, despite the demand shock

dominating the variance of output in the true DGP. In addition, the response of output to the

supply shock is subdued due to the offsetting impact of the demand shock.

Both the Spectral and Limited Spectral methodologies will erroneously conclude that a

dominant structural demand shock has little effect on inflation. Practitioners will need to have

an a priori understanding of the range of potential confounding shocks in these exercises, and

interpret the results accordingly.
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Figure 15: Targeting Output and Inflation at Business-cycle Frequencies in a two shock
New Keynesian model

Note: 16th and 86th percentile error bands. The first row shows impulse responses to the shock which maximises

the variance of output produced by the simple New Keynesian model at business-cycle frequencies (6-32 quarters).

The second targets inflation. Blue lines indicate the true IRF of the demand shock (top row) and supply shock

(bottom row). Shared area and red line indicate the VAR-estimated IRF median and 68% confidence bands.

7 Conclusion

This paper documents the biases that can be introduced into the long-run and variance-maximising

methodologies by confounding shocks. We show theoretically why this is the case, and why

Monte Carlo DSGE simulations have previously failed to account for this issue given the over-

whelming dominance of technology shocks in many such models. Three alternative SVAR iden-

tifications are proposed to deal with confounding shocks with different frequency domain prop-

erties, two of which are new (Limited Spectral and NAMS).

All proposed approaches and the Max-Share methodology are found to be more robust to

multiple sources of bias compared to the long-run identification of technology shocks. Using a

simple two-variable model, we show that the NAMS approach is less susceptible to confounding

low-frequency shocks when trying to identify highly persistent technology shocks. However, it

suffers from lag-truncation bias to a higher degree than the Max Share and Spectral approaches
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and is unable to capture technology shocks when estimated on differenced labor productivity

data unless the technology shock has highly persistent effects on labor productivity growth. Two

types of SVAR identifications in the frequency domain show significantly reduced estimation

bias in the presence of business-cycle frequency confounding shocks relative to technology. The

newly developed Limited Spectral identification also reduces lag-truncation bias compared to

existing spectral methodologies to a degree. Table 6 summarizes the relative performance of

each method under the gamut of DGPs examined, showing the top three performing methods

in each. Notice that both spectral methods are top-ranked in all the DGPs considered in this

paper. Therefore, in the absence of clear information about the appropriateness of one particular

method, a spectral approach appears a safe one to take. Additionally, given small sample and

lag-truncation estimation issues, the Limited Spectral method is our preferred specification.

We demonstrate that the US productivity data suggests the presence of persistent effects

of technology on labor productivity growth. The Spectral identifications are the only methods

able to both robustly estimate the SVAR using labor productivity in log-differenced form, which

is better able to capture this feature of the data. The Max Share approach, which otherwise

compares well with the Spectral methodologies, captures a much less persistent impulse response

when estimated in this differenced form, reflecting the presence of confounding non-technology

shocks.

Finally, we illustrate how our findings concerning confounding shocks also extends to the

identification of dominant business-cycle shocks. In particular, we demonstrate how misleading

IRFs can be uncovered when identifying dominant business-cycle shocks in the US data using

data generated by a simple New Keynesian model.
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Table 6: Performance of identifications in different simulations

Identification Long-Run Max-Share Spectral Limited Spectral NAMS

Levels New Keynesian + + + -
RBC + + + -

Differences New Keynesian - + + + -
RBC - + + + -

Levels CKM impact
bias

- + + + -

Differences CKM impact
bias

+ + + + -

Levels CKM lag-
truncation bias

- + + + -

Levels 2-variable unit
root

+ + + +

Differences 2-variable unit
root

- - + + +

Business-cycle
confounding

2-variable sta-
tionary

- - + + -

Low-freq con-
founding

2-variable sta-
tionary

- - + + +

Note: Top three specifications are designated with “+”, except in cases where an additional specification has a
similar performance (long-run in the differenced CKM impact-bias, or 2-variable unit root levels where 4
identifications have near-idential performance), or in cases where the third best specification is significantly
behind the top 2 (business-frequency confounding shocks).

8 Appendix

8.1 What shock is Max-Share capturing?: Sources of bias

8.1.1 Low and high-frequency drivers of forecast errors

In this Appendix section, we formally demonstrate that the Max-Share identification is prone to

contamination from shocks of higher-frequency or lower persistence than desired. In the below,

we show the contamination from a high frequency shock when the econometrician attempts to

identify a low-frequency shock. However, the logic below could easily be replaced by a high-

persistence shock contaminated by a low persistence shock to demonstrate the same result.

A series Y is driven by two structural shocks, a low-frequency shock εl and a high frequency

shock εh with cov(εl, εh) = 0. The forecast error at horizon k is a function of the structural

impulse responses at each horizon At = [AltA
h
l ]. The series At is formed of the reduced-form

MA coefficients and the identification matrix, A(L) = B(L)A0.
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F (Y )k =
i=k∑
i=0

[
Ali Ahi

]εli
εhi


In turn, the forecast error variance of Y is:

F 2(Y )k =
i=k∑
i=0

(Aliε
l
i)

2 +
i=k∑
i=0

(Ahi ε
h
i )2

The proportion of F 2(Y )k explained by low-frequency shocks is increasing in the persistence

of Al relative to Ah as k increases. It is also increasing in the relative variance of the impact

of the low frequency shock
(
Al0ε

l

Ah0 ε
h

)2
. For the researcher looking to isolate the shock which

dominates the low-frequency dynamics of a particular series, k must be set sufficiently high for

the low-frequency shock to dominate the forecast error variance.

Lemma 2 Where a series is driven by a combination of low and high frequency processes,

the low frequency shock will only account for the majority of the forecast error variance for

sufficiently large k, such that: ∑i=k
i=0 A

l
i∑i=k

i=0 A
h
i

>
Ah0ε

h

Al0ε
l

By definition, the series of high frequency shock coefficients will be declining at a faster rate

than for low frequency coefficients. In some cases, the variance of the low frequency shock will

exceed the variance of the high frequency shock, and dominate the forecast error variance from

the initial period.

The probability of mistaking a transitory shock for a persistent one will be low where the

low-frequency shock takes the form of a unit root process. Take a limiting case, where Yt =∑T
i=0A

l
iε
l
i+A

h
0ε
h
t , ie. Yt is driven by a permanent I(1) shock and a transitory white noise process.

Here, Al0:k = 1, while Ah0 = 1, Ah1:k = 0. The low frequency shock will dominate the forecast

error variance for k ≥
(
Ah0 ε

h

Al0ε
l

)2
. But for other processes, there may be confounding shocks with

similar frequencies to the shock of interest. For low frequency shocks with less than infinite

periodicities, and in the presence of persistent business cycle shocks, the researcher is liable to

identify a shock other than the low-frequency shock without sufficiently high k.
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8.1.2 Solving the maximization problem

Even where the low-frequency shock dominates the forecast error at horizon k, the shock cap-

tured by Max-Share will not consist only of this underlying shock. Here we show that the shock

which maximizes the contribution to the forecast error variance of productivity is a combination

of the low and high-frequency structural shock, rather than the dominant underlying structural

shock.

Start with the definition

Yt = B(L)ut

with the true underlying structural shock A−1
0 u = ε, where ε refers to the low and high frequency

shocks described in the previous example. In the Max Share approach, the search for A0 begins

with Ã0, a Cholesky decomposition of Σu and the impulse matrix Ãτ = Dτ Ã0 for the impact

of the shock at horizon τ . The ‘true’ structural shock is defined using an unknown orthonormal

matrix Q, such that the true structural impulse matrix Aτ = ÃτQ and the forecast error at

horizon k is

F (Y )k =

k∑
τ=0

ÃτQεt+k−l =

k∑
τ=0

Aτ εt+k−τ

with the error variance also equivalent for both the true shock and the initially proposed Cholesky

decomposition form since:

Σ(k) =

k∑
τ=0

Ãτ Ãτ ′ =

2∑
τ=0

ÃτQQ′Ãτ ′

As in Uhlig (2003), isolating the shock which explains the largest proportion of the forecast

error variance reduces to an eigenvector decomposition problem. This means searching for an

orthonormal vector q (of the matrix Q) which maximizes the forecast error variance for variable

ii.

F 2(Y )k =

k∑
τ=0

(
(Dτ Ã0q)(D

τ Ã0q)
′
)
ii

= q′S(k)q
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Where

S(k) =

k∑
l=0

(Dτ
i Ã0)(Dτ

i Ã0)′

Maximizing q′S(k)q is a Lagrangian with the constraint that q′q = 1

L(q) = q′S(k)q − λ(q′q − 1)

whose first order conditions reduce to solving for the eigenvector associated with the largest

eigenvalue of S(k)

S(k)q = λq

.

Will this q be equivalent to the first column of Q defining the true low and high-frequency

structural shocks, A0 = Ã0Q?

We will demonstrate that, in an attempt to isolate the low-frequency shock, the q in the

Max-Share rotation will still contain features of the high-frequency shock, the extent depending

on the forecast horizon, the relative variances of the shocks, and the relative persistence of the

shocks. While we demonstrate this for the simple 2x2 case we argue that the results hold for

higher dimension VARs.

As in the previous example, the true underlying low and high-frequency shocks can be written

as

A0ε =

Al11 Ah12

Al21 Ah22

εl
εh


Here, Al11 and Al21 refer to the impacts of the low frequency shock on variables 1 and 2 respec-

tively in period 0, while Ah22 and Ah12 refer to the impacts of the high frequency shock on variable

2 and 1 respectively.

The total forecast error variance is equivalent when using the structural form of the shocks

and the reduced form since

Σµ = A0A
′
0

The forecast error variance can be computed using the structural shocks and the reduced
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form MA-representation coefficients Di:T
2×2. We are only interested in the impacts on the first

endogenous variable of the system (for example productivity), and therefore only require the

first row of B for our computation of the forecast error variance.

FEV (K) =

k∑
iτ=0

[D11
τ D

12
τ

]Al11 Ah12

Al21 Ah22

εl
εh

′[D11
τ D

12
τ

]Al11 Ah12

Al21 Ah22

εl
εh


At K = 0, [D11

0 D12
0 ] = [1 0] since the second variable will not have a contemporaneous

impact on the first.

Therefore:

S(0) = F 2(Y )0 =

 (Al11)2 Al11A
h
12

Ah12A
l
11 (Ah12)2


As in Uhlig, finding the shock that maximizes the forecast error variance of variable i reduces

to an eigenvector problem.

Returning to the Lagrangian where we maximize q′S(k)q subject to q′q = 1. In the case

of S(0) = FEV (0), the eigenvalue problem is simple. Here, there are two eigenvalues found,

λ = [(A2
11 +A2

12), 0]. The eigenvector associated with the largest eigenvalue, the non-zero value,

is simply a ratio of the impact of the two shocks on variable 1 at time zero. Normalizing the

second contribution to 1, the un-normalized eigenvector can be written as:

q̃(0) =

Al11Ah12

1


The normalized eigenvector q can be obtained by dividing each element of q̃ with its Eu-

clidean length. This also demonstrates the generalized solution to the eigenvector problem for

a symmetric 2x2 matrix as a function of the square root of the diagonal elements of S. q̃ will

always be proportional to the standard deviation of variable 1 driven by each shock. As this

will vary over time, the identified shock will also vary over the timespan used to calculate the

forecast error variance.

In period 1, D = [D11
1 D12

1 ], and therefore:
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S(1) = S(0)+

[D11
1 D

12
1

]Al11 Ah12

Al21 Ah22

εl
εh

′[D11
1 D

12
1

]Al11 Ah12

Al21 Ah22

εl
εh


=

 (Al11)2 + (D11
1 A

l
11 +D12

1 A
l
21)2 Al11A

h
12 + (D11

1 A
l
11 +D12

1 A
l
21)(D11

1 A
h
12 +D12

1 A
h
22)

Ah12A
l
11 + (D11

1 A
l
11 +D12

1 A
l
21)(D11

1 A
h
12 +D12

1 A
h
22) (Ah12)2 + (D11

1 A
h
12 +D12

1 A
h
22)2


The eigenvector is now a function of the ratio of the impact of shock 1 on variable 1 in

periods 1 and 2 relative to the impact of the high frequency shock in both periods:

q̃(1) =

Al11+(D11
1 Al11+D12

1 Al21)

Ah12+(D11
1 Ah12+D12

1 Ah22)

1


We can then generalize the form of the eigenvector q as a function of the forecast error

variance horizon chosen:

q̃(k) =

Al11+
∑k
τ=1(D11

τ A
l
11+D12

τ A
l
21)

Ah12+
∑k
l=1(D11

τ A
h
12+D12

τ A
h
22)

1


By definition, the ratio

∑k
τ=1(D11

τ A
l
11+D12

τ A
l
21)∑k

τ=1(D11
τ A

h
12+D12

τ A
h
22)

, will be increasing over time, as shock 1 has

been designated to be more persistent.

As k increases, the ratio of q̃1q̃2 in q̃ =

q̃1

q̃2

 will increase, placing more weight on the persistent

shock. In all cases however, the shock found will be a linear combination of the persistent and

non-persistent shocks. The ratio will also depend on the initial variance of the respective shocks

(
Al11
Ah12

), and their relative persistence:
∑k
τ=1(D11

τ A
l
11+D12

τ A
l
21)∑k

τ=1(D11
τ A

h
12+D12

τ A
h
22)

.

8.2 DSGE Model Specifications

New Keynesian model. The New Keynesian model used is that of (Erceg et al., 2005). The

consumer utility function includes habit persistence and disutility of labor:

Et

∞∑
j=0

βj

{
log
(
Ct+j − φcC̄t+j−1

)
− χ0,t+j

N1+χ
t+j

1 + χ

}

The persistence parameter is set close to the mean value in Smets and Wouters (2007) (φc = 0.6).
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τNt and χ0,t are a labor tax rate shock and a labor supply shock, respectively. Both labor

market innovations are assumed to follow AR (1) processes,

τNt = ρNτNt−1 + στN ετN t

χt = ρχχt−1 + σχεχt

Households face a budget constraint such that consumption, investment, and bond purchases

must equal after-tax labor and capital income.

Ct + It +
1

1 + rt
Bt+1 −Bt = (1− τNt)WtNt + Tt + Γt +RKtυtKt +t −0.5φKKt(

It
Kt
− δ̂)2

Variable capacity utilization is incorporated into the production function so that variation

in the Solow residual reflects both changes in technology and movements in the unobserved level

of capacity utilization (ut,). The production function is given by:

Yt = (utKt)
θ ((ZtVt)Nt)

1−θ

Technology, Zt, evolves as a unit root process according to:

log(Zt)− log(Zt−1) = µz + σZεzt

Intermediate goods are produced by monopolistically competitive firms with a Calvo pricing

structure, resulting in a Phillips curve with the following structure:

πt = βπt+1 + κp [ζt − (yt − nt)]

where the slope is determined by the probability of prices resetting (ψp)

κp =
1− ψp
ψp

(1− ψpβ)

Households supply monopolistically differentiated labor services to a competitive ”labor market
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aggregator”. The inertia in wage adjustment results in a wage Phillips curve of the form:

πωt = βEtπ
ω
t+1 + κw

(
χnt + χt − λct − ζt +

1

1− τN
τNt

)

where

κw = 1−ψw
ψw
(

1+χ 1+θw
θw

) (1− ψwβ)

and Changes in real wage, ζ, are related to nominal wage and price inflation as follows:

∆ζt = πωt − πt − σzεzt

The economy satisfies the following resource constraint

(
1− g

y

)
yt =

c

y
ct +

i

y
it + gt

where c/y = (1 − i/y − g/y) denotes the steady state consumption share of GDP. gt is a

government spending shock that follows an AR process:

gt = ρggt−1 + σgεgt

Finally, the model is closed with an interest rate rule describing monetary policy:

it = γiit−1 + γππ
(4)
t + γy∆y

(4)
t + σf εft

where interest rate is set in response to year-on-year inflation and output growth and εft is a

monetary policy shock.

CKM 2008 RBC model

Consumers’ utility functions are given by

Eo

∞∑
t=0

[β(1 + γ)]tU(ct, lt))]

where c is consumption, l is per capita labor, β is the discount rate and γ the population growth

rate. Consumers maximize utility subject to the budget constraint:
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ct + (1 + τx)[(1 + γ)kt+1 − (1− δ)kt] = (1− τlt)wtlt + rtkt + Tt

Where τx is a tax on investment, k is the capital stock, δ the depreciation rate, w wages, r

the rental rate on capital and T a lump sum transfer.

Firms face a resource constraint:

ct + (1 + γ)kt+1 = yt + (1− δ)kt

and face a standard constant returns to scale production function:

Yt = kθt (Ztlt)
1−θ

The technology and non-technology shocks (a stochastic tax on labor income) evolve accord-

ing to

logZt+1 = µz + logZt + logzt+1

τlt+1 = (1− ρl)τ̂l + ρlτlt + εlt+1

The bias of the technology shock impact on hours

Many practitioners will be interested in the bias of each identification for the IRF of technol-

ogy on hours worked. Figure 16 shows that for hours, a similar ranking of specifications occurs

relative to the bias of the IRF of technology on productivity.
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Figure 16: IRF bias of technology shock on hours worked: NK and RBC models

New Keynesian RBC

8.3 Alternative Simulations

8.3.1 More persistent confounding shocks

In section 4.2.2, the ability of each SVAR identification to correctly estimate a technology shock

in the presence of confounding low-frequency shocks is evaluated. In this section, we evaluate

the impact of making the confounding shock closer in persistence to the technology shock.

In the original scenario, the technology shock is assumed to have persistence 0.9, while the

coefficient on the confounding low-frequency shock is 0.3 (ρb,1 = 0.3). Here, we show that when

raising the persistence of the confounding shock to 0.6, closer to the persistence of the technology

shock (z). Figure 17 shows that the NAMS approach continues to have the lowest IRF bias even

with the increased persistence of confounding shock, while the Spectral identification biases are

the second-lowest in the initial stages of the IRF, consistent with the original scenario. In both

cases however, the IRF bias has increased relative to the main-text scenario.
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Figure 17: Bias of technology shock IRF for labor productivity: increased persistence of
confounding low-frequency shock

Note: Absolute bias of technology shock IRF for labor productivity compared to ’true’ impulse, based on 100

simulations of data (250 periods in each simulation)

8.3.2 Changing the target horizon for Max-Share and NAMS

Simulations in this paper have used the standard target horizon for Max-Share of 10 years over

which to maximize the forecast error variance (used by Francis et al. (2014) and Barsky and Sims

(2011)). For consistency, we have adopted this time horizon for the NAMS approach. In this

section, we evaluate the effects of increasing the target horizon for both NAMS and Max-Share

to 15 years. IRF biases remain similar in magnitude to the baseline case of using a 10-year

target range.
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Figure 18: Bias of technology shock IRF for labor productivity: increased target horizon
for Max Share and NAMS to 15 years

Note: Absolute bias of technology shock IRF for labor productivity compared to ’true’ impulse, based on 100

simulations of data (250 periods in each simulation)

8.4 CKM (2008) simulations

In this appendix section, we first show that our new proposed specifications most accurately

assess the technology shock’s impact on hours as well as productivity. Second, we show that re-

ducing the persistence of the non-technology shock from 0.95 (CKM’s original parameterization)

reduces the discrepancy in performance between the Max-Share and our proposed specifications

- when these highly persistent shocks (with material effects on labor productivity at the 10-year

horizon) are reduced, model performance is comparable.
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Figure 19: CKM: Impact bias on hours from technology as the proportion of output driven
by non-technology shock is varied

Note: The proportion of variance driven by the non-technology shock is calculated by simulating the model with

one shock at a time, and then comparing the variance of the HP-filtered series for output from each simulation,

as in CKM.
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In the case of the effect of a technology shock on hours, the Max-Share, Spectral, Limited

Spectral and NAMs approaches show minimal bias-although the spectral approach bias does

increase as technology shocks make up less than 50 percent of the variance of output (Figure

19). In the case of the long-run restriction, bias increases for lower influences of non-technology

shocks. As noted in the main text, one of the reasons for the higher bias of the NAMS and

spectral approaches in detecting the impact of technology on productivity in CKM is due to the

high persistence of non-technology shocks in their model. As NAMS and the spectral methods

are designed to capture highly persistent shocks, they are biased by the presence of multiple

shocks with this characteristic. By reducing the persistence parameter of the non-technology

shock from 0.95 to 0.7, the bias in both of these identifications falls considerably (Figure 20).

This same change does not improve the performance of the long-run restriction.
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Figure 20: CKM with lower persistence non-technology shock: Impact bias on productivity
as proportion of output driven by non-technology shock is varied

Note: The proportion of variance driven by the non-technology shock is calculated by simulating the model with

one shock at a time, and then comparing the variance of the HP-filtered series for output from each simulation,

as in CKM. In this simulation, the persistence parameter of the non-technology shock is reduced from 0.95 to 0.7,

demonstrating a lower bias for the NAMS and spectral approaches than in the high-persistence case
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8.5 US Data Appendix

The application to the US data uses the following series from the St. Louis Fed’s FRED database

from 1953 Q2: 2018 Q3.

Table 7: VAR series and FRED database codes

Variable FRED mnemonic and transformation

Labor productivity log(OPHNFB)*100
Hours worked per capita log(PRS85006023*CE16OV/CNP16OV)*100

Investment share (includes durable goods) log((100*(PCDG+GPDI)/GDP))*100
Consumption share log(100*(PCND+PCESV)/GDP)*100

Inflation (∆log(DPCERD3Q086SBEAt) ∗ 100
10-year treasury yield GS10
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