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Abstract

A crucial but often ignored element of inflation expectations is the amount of
perceived inflation risk. This paper estimates the degree of uncertainty and asymmetry
in the probability forecasts of the Survey of Professional Forecasters (SPF) using a new
methodology. The main conclusion from our analysis is that, when monitoring inflation
expectations, limiting attention to a point prediction is not sufficient. The analysis of
inflation expectations should take into account inflation risks. As an example, we show
that our measures of inflation risks can better explain why inflation scares happened

in the bond market during the Volcker disinflation.

Keywords: Inflation risk, inflation expectations, Survey of Professional Forecasters (SPF), skew-normal
distribution, power divergence estimators
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Non-technical summary

A crucial but often ignored element of inflation expectations is the amount of perceived
inflation risk. Inflation expectations play a central role in economic analysis. All central
banks monitor closely private sector’s inflation expectations, using both indicators derived
from financial instruments and survey of inflation expectations. Yet, researchers and
policymakers restrict attention to point predictions and neglect inflation risks.

The analysis of inflation expectations appears to be restricted to point predictions for
two reasons. First, most surveys, which are a key source of information about inflation
expectations, only gather information about a point prediction. Quantitative evidence
on the perceived inflation risks is therefore missing. Second, the analysis of inflation
expectations often uses linear models that neglect inflation risks.

In this context, the purpose of this paper is twofold. First, we provide quantitative ev-
idence of the perceived inflation risks over the last four decades. Our quantitative evidence
comprises two key metrics to assess the perceived risks in inflation expectations, namely
the degree of forecast uncertainty and the degree of forecast skewness (i.e. the asymmetry
in the forecasts). We then illustrate that the analysis of inflation risks could play a key
role in the analysis of central bank credibility. As an example we show that our measures
of inflation risks in the 1980s shed new light on the bond market inflation scares faced by
the Federal Reserve under chairman Volcker.

We use the probability forecasts of the Survey of Professional Forecasters (SPF) to
measure perceived inflation risks. The SPF is a quarterly survey of macroeconomic ex-
pectations that, although launched in 1968 by the American Statistical Association and
the NBER, is nowadays conducted by the Federal Reserve Bank of Philadelphia. The
SPF allows to estimate the risks surrounding inflation expectations because forecasters
report probabilities of inflation falling into pre-specified intervals, i.e. a density forecast
in the form of a histogram. The literature has proposed several alternative approaches to
analyze the SPF histograms, but extracting risk measures from those histograms, either
by parametric or non-parametric methods has proved quite challenging. To obtain reliable
estimates of inflation risks for the SPF data, this paper introduces a new methodology.

We measure inflation risks by fitting a density to the SPF histograms. Our method-
ology departs from existing literature in two fundamental aspects, namely the choice of
a fitting criterion and the choice of underlying density. As fitting criterion we propose a
small departure from maximum likelihood estimation. As underlying density we employ a

potentially asymmetric distribution, the skew-normal. Skewness is a crucial feature of any
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forecast, and, often provides valuable information. For example, most central bank policy
statements include references to the “assessment of inflation risks”. By using the skew
normal-density, we “let the data speak” about perceived asymmetries in inflation risks.

The main conclusion from our analysis is that, when monitoring inflation expectations,
limiting attention to a point prediction is not sufficient. A thorough analysis of inflation
expectations should take into account inflation risks. We find that (mean) inflation expec-
tations tend to co-move with inflation uncertainty, but move little with inflation skewness.
We document strong swings in inflation risks in the last few decades, swings that were
not shared by standard measures of mean inflation expectations and that can improve our
understanding of many economic events.

Inflation risks offer additional dimensions to assess the credibility of monetary policy.
Central bank credibility should not only anchor mean inflation expectations but also re-
duce perceived inflation risks. Goodfriend and King [2005] provide an excellent historical
analysis of the Volcker disinflation and persuasively argued that one of the crucial elements
to understand that disinflation is the imperfect credibility of the Volcker Fed, which led
to four “inflation scares” in the 1980s. Our analysis shows that, for most of the 1980s,
perceived inflation risks remained high, even when mean inflation expectations (and actual
inflation) were declining. Moreover, to understand the movements in long-term interest
rates in the 1980s, changes in perceived inflation risks, particularly upside risks to the in-
flation outlook, are fundamental. A close monitoring of the risks to inflation expectations
is therefore useful to gauge central bank credibility.

Policymakers and researchers can obtain valuable information about the general macro-
economic situation by monitoring inflation risks. We show that the influence of the business
cycle on inflation risks is strong and timely: inflation risks tend to decline ahead of reces-
sions, are strongly influenced by the perceived uncertainty about real GDP growth and also
respond to the perceived probability of recession over the forecast horizon. The strength
of the relationship between business cycle conditions and inflation risks has however varied
over time, and, since the early 1990s, seems to have weakened.

The evidence suggests that a thorough analysis of the probability distributions of the
SPF provides additional insights not only about how inflation expectations change over
time but also about developments in other macroeconomic and financial variables. We
hope that the methodology developed in this paper and our analysis of the dynamics of
inflation beliefs during the Volcker disinflation period could be a first step in that regard.
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“...we must consider not only what appears to be the most likely outcome,

but also the risks to that outlook...”

— Testimony of Fed Chairman Ben Bernanke to the U.S. Senate, July 19, 2006 —

1 Introduction

A crucial but often ignored element of inflation expectations is the amount of perceived
inflation risk. Inflation expectations play a central role in economic analysis. Central banks
closely monitor inflation expectations, both from financial market indicators and surveys.
Yet, that researchers and policymakers restrict attention to point predictions and neglect
inflation risks is very surprising. To explain developments in inflation expectations, a point
forecast is only sufficient under very restrictive assumptions. In general, understanding
inflation expectations requires the analysis of perceived inflation risks.!

The analysis of inflation expectations appears to be restricted to point predictions
for two main reasons. First, inflation surveys emphasize point predictions, and evidence
on perceived inflation risks is either not requested at all or, when requested, not easy
to assess.? Second, although in recent years research has emphasized time-varying infla-
tion volatility and time-varying inflation risk premia as crucial elements to understand
US macroeconomic dynamics, the analysis of inflation expectations often uses linear (or
linearized) models that ignore higher-order moments and abstract from inflation risks.

The purpose of this paper is twofold. We first provide quantitative evidence of the
perceived inflation risks over the last four decades. Our quantitative evidence comprises
two key metrics to assess the perceived risks in inflation expectations, namely the degree
of forecast uncertainty and the degree of forecast skewness. Second, we show that the
analysis of inflation risks explains the bond market inflation scares in the 1980s.

We use the probability forecasts of the Survey of Professional Forecasters (SPF) to
measure perceived inflation risks. The American Statistical Association and the NBER
launched the SPF in 1968 as a quarterly survey of macroeconomic expectations, and
the Federal Reserve Bank of Philadelphia took over in 1990. We can therefore analyze
perceived inflation risks since 1968Q4. The SPF allows to estimate the risks surrounding
inflation expectations because forecasters report probabilities of inflation falling into pre-
specified intervals, i.e. a density forecast in the form of a histogram. The literature has

proposed several alternative approaches to analyze the SPF histograms, but extracting

"Rather than (knightian) “uncertainty” we prefer inflation “risks” because we summarize the inflation
randomness by the statistical moments of probability forecasts (see Machina and Rothchild [2007]).
2Survey data are often critisized because panelists have little incentive to provide their true expectations.

The superior accuracy of survey forecasts found by Ang et al.[2007] however questions those concerns.
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risk measures from those histograms, either by parametric or non-parametric methods has
proved quite challenging.?

To obtain reliable estimates of inflation risks from the SPF data, this paper introduces
a new methodology. We follow recent literature (see for example Giordani and Séderlind
[2003], Engelberg, Manski and Williams [2007]) and measure inflation risks by fitting
a theoretical density to the SPF histograms. Our methodology however departs from
existing literature in two fundamental aspects, namely the choice of a fitting criterion and
the choice of underlying density.

As fitting criterion we propose a small departure from maximum likelihood estimation.
Extracting reliable risk measures from the SPF histograms requires an efficient and robust
estimator. Each SPF histogram is a discretized version of the (true) density forecast. We
assume that the discretization reflects how many “draws” from the true density lie within
each of the pre-specified intervals in the questionnaire, and therefore interpret the reported
probabilities as the realization of a multinomial distribution. In this context, least squares,
the fitting criterion usually employed in existing literature on SPF data, is not efficient.
In addition, a small departure from maximum likelihood provides additional robustness
to zero-probability intervals in the SPF data.

As theoretical density we employ a potentially asymmetric distribution, the Azzalini’s
[1985] skew-normal family. Recent SPF work neglects inflation skewness (see Giordani
and Soderlind [2003], Rich and Tracy [2006] and D’Amico and Orphanides [2006]). Skew-
ness is however a crucial feature of any forecast, and, often provides valuable additional
information. For example, most central bank policy statements include references to the
“assessment of inflation risks”. Moreover, if the SPF probability forecasts are skewed,
neglecting asymmetries in the theoretical density leads to biased estimates. By using the
skew normal density, we “let the data speak” about perceived asymmetries in inflation
risks. Monte Carlo evidence confirms that these two methodological contributions lead to
significant accuracy gains.

The main conclusion from our analysis is that, when monitoring inflation expectations,
limiting attention to a point prediction is not sufficient. A thorough analysis of inflation
expectations should take into account inflation risks. We find that (mean) inflation expec-
tations tend to co-move with inflation uncertainty, but move little with inflation skewness.
We document strong swings in inflation risks in the last few decades, swings that were
not shared by standard measures of mean inflation expectations and that can improve our

understanding of many economic events.

3The pioneering work of Zarnowitz and Llambros [1987] and Lahiri et al. [1988] used non-parametric
methods. In search for more reliable estimates, more recent research proposed fitting a distribution to the

SPF histograms.
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Measures of inflation risks offer additional information to assess the credibility of mon-
etary policy. Central bank credibility implies that (mean) inflation expectations are well-
anchored and perceived inflation risks are low. A striking feature of our estimates of
inflation risks is their behavior in the 1980s, during the Volcker disinflation period. Good-
friend and King [2005] provide a detailed historical analysis of the Volcker disinflation and
argue that a crucial element to understand this disinflation is the imperfect credibility of
the Volcker Fed. Indeed, the Fed faced four “inflation scares” in the 1980s. To gauge
its credibility, the FOMC focused on long-term bond yields. Our analysis shows that,
to understand the movements in long-term interest rates in the 1980s, changes in per-
ceived inflation risks, particularly upside risks to the inflation outlook, are fundamental.
For most of the 1980s, perceived inflation risks remained high, even when mean inflation
expectations (and actual inflation) were declining. The high levels of perceived inflation
risks explain why inflation scares happened in the bond market, in particular in 1983-84,
when inflation and inflation expectations appeared contained. A close monitoring of the
risks to inflation expectations proves therefore useful to gauge central bank credibility.

Policymakers and researchers can also obtain valuable information about the general
macroeconomic situation by monitoring inflation risks. A reason for monitoring inflation
expectations is that, besides the inflation outlook, they comprise information about the
general macroeconomic outlook. In particular, monetary policy discussions often interpret
changes in inflation expectations in the context of expected changes in the general macro-
economic situation, for good reasons. We show that the influence of the business cycle on
inflation risks is strong and timely: inflation risks tend to decline ahead of recessions, are
strongly influenced by the perceived uncertainty about real GDP growth and also respond
to the perceived probability of recession over the forecast horizon. The strength of the
relationship between business cycle conditions and inflation risks has however varied over
time, and, since the early 1990s, seems to have weakened. These findings provide strong
support for the work allowing for time-varying relationships with inflation expectations
and opens new lines of research for the role of inflation risks in business cycle analysis.

The remainder of the paper is as follows. Section 2 introduces our methodology to
measure the inflation risks, in particular our choice of theoretical density function and
fitting criterion. Section 3 presents Monte Carlo results that support the accuracy gains
from our proposed methodology. Section 4 provides stylized facts on inflation risks. We
also analyze the relationship between different moments of inflation forecasts. Section 5
focuses on the dynamics of private sector beliefs about inflation in the 1980s and interprets
the inflation scares during the Volcker disinflation period in the light of our inflation
risk measures. Section 6 investigates the relationship between inflation risks and key

macroeconomic variables. Finally Section 7 concludes.
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2 A new methodology to analyze the SPF histograms

The Survey of Professional Forecasters (SPF) asks panelists to assign probability to future
inflation falling within some predetermined intervals.* The subjective probability forecasts
are therefore reported in the form of histograms. As part of the published survey results,
the individual histograms are aggregated across panelists to construct a combined prob-
ability forecast, which reflects the average probability assigned to each interval in every
survey round.

We interpret the SPF histograms as a discretized version of an unknown density fore-
cast, frr, of each forecaster £k =1,..., K . A thorough analysis of the information content
of the SPF probability forecasts requires to elicit the underlying density forecast from the
reported frequencies. In theory, the probabilities assigned to each survey interval should
correspond to the integrals of the underlying density function p;; := f:il frk(x)dx, calcu-
lated over each of the intervals (o;;_1,c;), i = 1,...,1.° In practice, however, it is unlikely
that survey participants discretize their subjective density forecast by computing those
integrals.

As working assumption we interpret the reported probabilities as the proportion of
“random draws” taken from the subjective density forecast that lie within each of the
intervals (a;_1, ;). Without loss of generality, we assume that the unknown density
function fry belongs to a suitable parametric family of distributions f, where g, € © C
R" and r is the number of parameters characterizing the family. ¢ Formally, we interpret
the probabilities assigned to each interval by the kth forecaster ({pix}, ¢ =1,...,I) as the
realization of a multinomial random variable with I classes.

In this multinomial framework, the observed frequencies {p;x} are a sufficient statistic
for estimating the theoretical probabilities {p;;} . Formally, denoting by {Z,},_; _y the
random draws used to fill in the questionnaire by a panelist, we have:

[, (npi)!

P(Zl = Zl,...,ZN = ZN |]/)\1,...,]/)\[) = T’V{Z"}n=17<--7]\f

which shows that, as the right-hand side of the expression only depends on the observed

frequencies, sufficiency holds.”

*The SPF also requests probability distributions for output growth but here we restrict the analysis to

the inflation density forecasts. See Croushore [1993] for a description of the SPF data.
SExcept for the first and the last intervals, which are one-side open (i.e. ap=-c0 and ar=+00), all

central intervals in each survey round have equal length.
%The larger the number of observations drawn, the closer to the integrals the reported frequencies would

be. In any case, no assumption about the number of draws is needed for our methodology.
"See, for instance, Gouriéroux and Montfort [1995] for a general development on sufficiency for discrete

distributions and information theoretical implications.
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Interpreting the estimation of the underlying density forecast in the context of the
(parametric) multinomial framework offers some advantages. Our framework makes ex-
plicit that the link between the unknown density function f and the reported probabil-
ities is stochastic, which, for example, helps explain the presence of rounded probabilities.
More importantly, the multinomial framework lends formal structure to the estimation
problem, and that structure provides some additional insights that have been overlooked

so far.

2.1 The choice of fitting criterion

We base our choice of fitting criterion on its properties to handle the peculiarities of
the SPF data. The inference problem is to find the parameters of the unknown density
function to match the reported frequencies of the SPF histograms. Although long-sample
properties (consistency, asymptotic normality and asymptotic efficiency) are desirable®,
the robustness of the estimator in small samples is crucial given the particular features of
the SPF data.

Recent work estimating parametric densities from the SPF histograms (Giordani and
Soderlind [2003], Rich and Tracy [2006], Engelberg et al.[2007], D’Amico and Orphanides
[2006]) uses least squares as fitting criterion, i.e. minimizing the sum of the squared
deviations between the theoretical and the observed probabilities over the set of intervals.
Formally, LS = Zi]:l (pi — pi(0))*.

For the SPF data, the LS criterion (although consistent) is however not efficient in
the standard sense that not all available information is used in the estimation. The LS
criterion assigns equal weight to the fitting errors for each interval. An efficient criterion
would instead assign different weights to the fitting errors depending on the probability
assigned to each interval, thereby exploiting the bell shape structure of the SPF histograms
to improve the estimation. Appendix A elaborates on the shortcomings of (unweighted)
least squares in the context of the SPF data.

Maximum likelihood estimation is a natural alternative approach in the context of the
multinomial framework. The sufficiency of reported probabilities {p;} implies that max-
imum likelihood would deliver a consistent, asymptotically normal and efficient estimate

of the density parameters. Specifically the optimal ¢ maximizes:’

8 Consistency, in the sense that the estimator @ converges to the true parameter value in probability as
the number of observations (draws from the true density forecast in our multinomial framework) n — oo.
Asymptotic efficiency, in the standard sense that no other estimator has smaller variance, as n — oo.

*The likelihood is — | Y

1_o(nPi)!
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I
loglik(Po, - - -, r,0) o Y _ pilogpi(o) (1)
i=1

or, equivalently, minimizes the log-likelihood ratio:!°

I I
G* = pilogpi —loglik(po, - .-, pr,0) = »_ Pilog(pi/pi(0)) (2)
=1 =1

Applying maximum likelihood estimation to the SPF data is however problematic, because
the low probabilities assigned to some intervals are likely to trigger numerical problems.
In addition, the optimal estimator for SPF data must be robust to potential model speci-
fication (i.e. possible misspecification of the theoretical density function) and to the likely
“loose” reporting of the discretization (sloppy handwriting, rounding practices, etc ).

To improve the robustness of the estimator in the context of multinomial distributions,
Cressie and Read [1988] consider departures from maximum likelihood estimation within
the family of “power divergence estimators” (PDE henceforth). Indexed by the parameter
7 € R, the family is defined as the estimators obtained by minimizing the following

expression with respect to g:'!

ren = e () - ®

To see that maximum likelihood can be interpreted as a particular case of this family

of criteria consider the limiting case of 7 = 0 in equation (3)

1 ~
P=tmr = 3 |es B+ o)

which shows that minimizing I with respect to o is equivalent to minimizing the log-
likelihood G2 (see equation (2)) above.!2

Under Birch’s [1964] regularity conditions, all power divergence estimators have the
optimal large sample properties of maximum likelihood (Cressie and Read [1984]), and are
all first-order efficient (see Lindsay [1994]). More robust power distance estimators however
underperform with respect to maximum likelihood estimation in terms of efficiency in
small samples (in our context small number of draws). We therefore choose our fitting

criterion (i.e. the optimal 7) within that family of estimators taking into account the

0The likelihood ratio G? is obtained by changing sign and adding the quantity (non dependent on p)

Zf:o Di logp; . Here we follow the notation of Cressie and Read [1988].
"' The family of power distance estimators encompasses many widely-used estimators such as the chi-

square criteria of Pearson and Neyman, the Hellinger distance, and the Kullback-Leibler divergence. See

Appendix A for further details.
2Note that Zf:oﬁi —pi(0) =0,Vp€O.
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small sample properties of the power divergence estimators and the characteristics of the
SPF data. An inspection of the SPF data suggests that (numerical) robustness to inliers
(i.e. intervals with much lower observed probability than the theoretical density suggests,
for example related to rounding) is fundamental: about 20% of the individual histograms
have some probabilities in two bins or less. In the presence of inliers, Lindsay [1994])
suggests a positive, but relatively low, value of the parameter 7, and Cressie and Read
[1988] recommend 7 = 2/3. In Section 3.1 below we provide some Monte Carlo simulations

that confirm that a positive but rather low 7 is optimal for the SPF data.

2.2 The choice of theoretical density function

Recent work on the SPF data has focused on the first two moments of inflation expectations
and neglected forecasts skewness. The asymmetry in the risks surrounding the central
expectation is however a crucial feature of any forecast. In the Bank of Sweden’s or
the Bank of England’s “fan charts”,' skewness plays a prominent role, and central bank
official statements often include references to the “assessment of risks”. Moreover, from
a purely technical point of view, if the SPF probability forecasts are skewed, neglecting
asymmetries in the theoretical density used to fit the histograms is likely to bias estimates
of the first two moments of the distribution.

Our goal is to extract as much information as possible from the SPF probability fore-
casts. In principle, kurtosis could also be of interest, but the SPF histograms provide a
limited amount of information about the density forecasts. The need to keep the exercise
feasible leads us to focus on the first three moments of the distribution and consider a
three-parameter density family.

We depart from existing literature by using a potentially-skewed density function:
the skew-normal distribution (see Azzalini [1985]). The skew-normal provides a one-to-
one mapping between its three parameters and the mean, variance and skewness.!* We
can therefore “let the data speak” about potential asymmetries present in the SPF data
without restricting our estimates of the other moments of the distribution. In addition,
the skew-normal density always remains unimodal, which is a reasonable premise when
dealing with macroeconomic expectations.

The skew-normal class is built by shifting and re-scaling a standard distribution with

a density function defined as

a(z):=20(2)@(Xz)  z€eR

3See Blix and Sellin [1998] and Britton et al. [1998].
"Other three-parameter distributions (i.e. the two-piece normal) do not provide such a direct mapping.

In more parsimonious but potentially skewed distributions, like the beta family, two parameters impose

undesired constraints on the estimation of the three moments of interest.
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where ¢ and ® are respectively the standard normal density and distribution functions,
and A € R is the shape parameter, which determines the skew of the distribution.'® In
particular, the skew-normal distribution nests the standard normal as a particular case
(A=0). In what follows, we use SN(A) for the skew-normal distribution just defined. A

general random variable Y is said to be skew-normal distributed when it can be written

_ Z — ElZ] N
Y—,u—i—o( V(Z)> 7 ~SN(A)

as

The first three central moments of Y are then expressed as'¢

EY] = pn
Y) = o2
Y) =y = (22— 1)b5%/ (1 - 6%6%)*?
where b = \/2/1 and & = A/y/(1+A?).

The skewness coefficient 7, is bounded in the interval (—0.995,0.995), and is a monoto-
nous function of the shape parameter A, sharing its sign. Figure 1 illustrates the flexibility
of this distribution by depicting four skew-normal densities with zero mean, unit variance

and four different values of the shape parameter .

3 Assessing our methodology

We choose our fitting criterion (i.e. the optimal 7*) based on the performance of power
divergence estimators for SPF-like data. This section also provides some quantitative evi-
dence on the accuracy gains in the estimation of the first two moments of the distribution
and illustrates the advantages of employing a potentially skewed distribution to fit the

SPF histograms with an actual example.

3.1 Accuracy gains

The Monte Carlo simulations are designed as follows. Pseudo-random draws are taken from
different underlying densities that range from a skew-normal (SN henceforth) with a high
degree of asymmetry (v; = 0.9) to the normal distribution (y; = 0). SPF-like histograms

are formed on the basis of the relative frequencies of the draws falling over a grid of

'5The sign of A determines the direction of asymmetry. Moreover, if Z is a SN (\)-distributed random
variable, then —Z is a SN(—\) random variable (see Azzalini [1985] for the properties of the distribution).

16 This parametrization avoids inference problems stemming from singularities in the Fisher information
matrix (Azzalini [1985] and Pewsey [2000]).
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intervals similar to the actual survey questionnaire.!” The parameters of the underlying
densities are estimated using different theoretical densities and fitting criteria (Normal
(N) and Skew-Normal (SN) densities, and least squares (LS) and our proposed fitting
criterion PDE(7*)) in order to assess the accuracy gains stemming from the individual or
combined use of our two methodological contributions.®

The optimal 7 should provide the lowest estimation errors for all three density pa-
rameters (u,o,7v;), but in practice such optimality is unlikely. Estimators within the
7 € (—0.5,1) range show a relatively similar estimation performance.'® The results also
confirm that a low but positive value of 7 helps cope with the inliers in SPF data, so we
fix 7* = 0.2. Our approach is therefore fully specified as PDE(7=0.2), SN.

Monte Carlo simulations confirm accuracy gains from our approach. Figures 2 to 5
illustrate the improvements in the estimation of the mean(u) and standard deviation (o) in
terms of the percentage decline in the mean square error (MSE) and mean absolute error
(MAE) using 50-draw samples and four different degrees of asymmetry in the distributions.
Appendix C provides a more comprehensive sensitivity analysis.

Figure 2 shows that for the mean and for the standard deviation the decline in MSE
is of at least 20% in all cases. Using the skew-normal rather than the normal distribution
also improves the estimation of the key moments of the distribution (see Figure 3). Gains
increase with the asymmetry in the data but the SN also performs well in the case of
symmetry in the true data generating process (DGP), despite being overparametrized. The
flexibility of the SN therefore appears to overcome the shortcoming of overparametrization.

Accuracy gains are maximized by combining the PDFE(7*) fitting criterion and SN as
underlying distribution: Figures 4 and 5 show the accuracy gains from using our criterion
rather than least squares fitting assuming a normal distribution in terms of MSE and
MAE. For both the mean and the standard deviation the improvement in terms of the
MSE is about 40%. In terms of the MAE, the improvement is also substantial (above 20%
in all cases).

The Monte Carlo results also confirm the reliability of our methodology for the es-
timation of the skewness parameter. Mean square errors are small (below 0.5 even for
very small samples), and decrease fast with sample size (see Table 1). In most cases the

estimation bias is also small (below 0.1), and only rises for the extreme hypothetical case

'"The intervals are (—o0,0),[0,1),[1,2)...,[7,8),[8, +00).To obtain draws from the SN distribution we

follow Henze [1986].
'8To compute the theoretical probabilities for each interval, p;(u, o,7) = Fy (o) — Fy (ai—1), we use that

Fy(a) = Fz» ((1 - (b6)2)1/2 (=£) + b6) ,and Fzx(z) = ®(z) — 2T (2, \), where T'(z, A) is the so-called
Owen function, for which precise approximations exist (see Azzalini [1985] and Patefield and Tandy [2000]).
19 Appendix C provides results for different sample sizes. The qualitative conclusions are robust to

alternative values of the mean and the standard deviation of the true distributions.
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of a rather small sample size (n=20) and highly skewed distribution (y=0.9). The biases
decrease with higher skewness, since errors on each side are bounded (see section 2.2 on
the admissible range of v), leaving less scope for error on one side of the true parame-
ter. Pinning down skewness however appears to be more challenging for highly skewed
distributions (vy=0.9): the bias is negligible for symmetric (y=0) distributions even in
rather small samples, but tends to rise with the asymmetry in the true data. For highly
skewed densities, the estimates tend to be pushed towards the upper and lower bounds
for the skewness index, which leads to a higher bias for extreme skewness. Such a extreme
skew in macroeconomic forecasts, in particular in inflation forecasts, is however unlikely.
Therefore, the impact of that estimation bias in our qualitative assessment of the skewness
embodied in the SPF inflation forecasts appears minimal.

In general, the first two moments are easier to pin down than the skewness parame-
ter. Despite having a higher (finite sample) MSE than the lower moments, the skewness
estimates asymptotically converge to the true values at a linear rate, in line with existing
results (Pewsey [2000]).

3.2 Fitting densities to the SPF histograms: practical considerations

We here illustrate the differences of fitting a normal and a skew-normal density to an
actual SPF histogram. The histogram has probability assigned only to three intervals,
and the distribution of those probabilities is quite asymmetric. Our fitting criterion uses
the information in those three intervals and also considers the surrounding empty bins
(inliers) to better identify the shape of the density. In addition our approach exploits the
flexibility of the skew-normal density to handle skewed forecasts.

Figure 6 depicts the normal and the skew-normal estimation for an actual SPF his-
togram with asymmetric features using our fitting criterion. This example also illustrates
that the increased flexibility stemming from the endogenous skew of our theoretical distrib-
ution is very useful to extract reliable estimates of the first two moments of the probability
forecast.

The identification of the three parameters of the skew-normal distribution in the case
of two or less bins containing probability can be understood by reference to the case
for a normal distribution. The parameters of a normal distribution are identified for
histograms with three or more active intervals. Heuristically, an additional interval with
positive probability should then suffice to identify the additional parameter implied by
the skew-normal distribution. Even if probability is only assigned to two intervals, the
survey response in fact conveys information for the probability contained in four intervals,
which guarantees identification for the skew-normal. The remaining case, i.e., when all

the probability mass is assigned just to one bin — that is information about three intervals
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— is paradoxically trivial: the assumption of uniform distributions within intervals for the
computation of initial parameter values yields in this case a zero value estimate for the
skewness parameter v, (as well as a mid-point estimate for the mean of the distribution),
with only a (low) variance to be identified.? In practise, numerical results confirm the
stability of the mean and skewness parameters at those initial values because with all the
probability mass in one single interval, the SPF data provide no information to explore
potential asymmetries in the distribution.

Our methodology, being robust to data inliers, can be therefore applied across the panel
of replies. Previous research has often made additional assumptions for the estimation of
the densities concentrated in a low number of intervals, thereby employing several different

approaches across the panel of replies.?!

4  Four decades of inflation risks: stylized facts

One of the purposes of the SPF requesting probability forecasts is to gauge information
about the risks to the point forecast. We use almost four decades, between 1969Q1 and
2006Q1, of probability forecasts to calculate their uncertainty (i.e. the variance) and their
risk assessment (i.e. skewness). For each survey round, we estimate the key moments
of both the individual density forecasts and the combined (or aggregate) distribution
calculated as a simple average of responses across forecasters.

The SPF requests probability forecasts for inflation over the current (since 1981Q3

22 With each survey round

also the next) calendar year for four consecutive quarters.
the forecast horizon therefore decreases. To assess how forecasts have evolved over time,
we use the current-year probability forecasts from the first-quarter surveys of each year,
and focus perceived inflation risks over a constant horizon of four quarters ahead. As a
robustness check for our correlations and regressions, we use together current and next
calendar year forecasts to construct a quarterly series of forecasts about four quarters
ahead. Specifically we take the current-year forecast in the Q1 (i.e. about four quarters

ahead) and in the Q2 survey rounds (i.e. about three quarters ahead) with the next year

20This case only arises in less than 5% of replies for the current year inflation forecasts.
*For instance, Engelberg et al. [2007] employ a triangular distribution for those histograms with less

than three active bins and a beta for the rest. Rich and Tracy [2006] propose using information from the
point estimates reported by the forecasters in the framework advocated by Wallis [2005], while D’Amico and

Orphanides [2006] propose direct fitting of the cumulative distribution of inflation uncertainty measures.
22There were occasional mistakes in the horizons in certain surveys. In 1968Q4, 1969Q4, 1970Q4,

1971Q4, 1972Q3 & Q4, 1973Q4, 1975Q4, 1976Q4, 1977Q4, 1978Q4, and 1979Q2, Q3 and Q4 the probability
variables referred to the following year, rather than the current year. The opposite situation appeared to
occur in the 1985Q1 and 1986Q1 surveys, but for those two survey rounds four quarters ahead forecasts

are still available in the dataset. See http://www.philadelphiafed.org/econ/spf/index.html.
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forecasts in the Q3 (i.e. about six quarters ahead) and in the Q4 survey rounds (i.e. about
five quarters ahead).

Our analysis of the SPF inflation risks provides some stylized facts. We first assess
the dynamics of inflation uncertainty and inflation skew. Next we check the link be-
tween (mean) expected inflation and perceived inflation risks. Finally, we investigate the

explanatory power of key macroeconomic variables on our measures inflation risks.

4.1 Measuring inflation uncertainty

Forecast uncertainty is directly linked to the probabilities that a forecaster assigns to the
possible values of the predicted variable: the tighter the distribution, the lower the un-
certainty. The variance (or standard deviation) of a forecasts is a direct measure of the
uncertainty surrounding the forecast. The estimated individual variances show signifi-
cant variations across forecasters that use the same number of intervals, reflecting large
discrepancies in probability mass assigned to those intervals (see Figure 7).

Measuring uncertainty for the panel of forecasters as a whole is however more prob-
lematic. Aggregate measures of uncertainty can be estimated from the combined SPF
probability distribution, or can be obtained by averaging the variances of the individ-
ual forecasts. Moreover, given that many surveys only request a single point prediction,
a long stream of literature focuses on the dispersion of point forecasts —the so-called
disagreement— as alternative indicator.?® The variance of the combined distribution, by
construction, reflects both the average of the uncertainty surrounding the individual fore-

casts and the dispersion of the individual mean forecasts. Formally:

1% _ 1 iv 1 iE - F 2 4
ar(m)—Ek:1 ar(m)+gk:1[ (mi) — E(mc)] (4)

Equation (4) holds in population terms independently of distributional assumptions.
The left-hand side can be estimated from the combined probability forecast and the right-
hand side can be calculated from the estimated individual density functions.

Over the last 40 years inflation uncertainty has exhibited significant fluctuations (see
Figure 8). It rose sharply following the two oil price crises in the 1970s, and during the
1980s there were also some other spikes before a significant decline since early 1990s.The
three measures of uncertainty from equation (4) experienced those fluctuations. The
decomposition of the variance of the combined distribution depicted in Figure 8, however,
shows that average uncertainty across panelists is the main component; disagreement
plays a minor role. The correlation with the variance of the combined distribution is also

higher for average uncertainty than for disagreement (see Table 2), a result that appears

23For a critical assessment see Rich and Butler [1998].
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robust to data frequency and period of study. The decomposition depicted in Figure 8
however makes evident that the independent estimation of the three terms in equation
(4), although accurate in general, is occasionally subject to errors, which call for caution

when interpreting changes in one single measure of inflation uncertainty.

4.2 Asymmetries in inflation risks

The assessment of risks surrounding the baseline scenario is an important characteristic of
any forecast. One of the novelties of our methodology is the estimation of the skewness of
the SPF probability forecasts. Evidence on the changes in the balance of inflation risks can
help better understand a number of macroeconomic phenomena. Moreover, our findings
provide two key features of the assessment of inflation risks that theories of expectations
formation should match.

First, we find that the SPF probability forecasts show strong asymmetries. More than
60% of the SPF individual probability forecasts have skewness index 7; higher than 0.3
(in absolute value). Moreover, more than 60% of the combined probability forecasts also
do so (see Figures 9 and 10). These results make accounting for asymmetry a must to
obtain reliable estimates of the first two moments of the SPF probability forecasts, and
therefore render support to our methodological approach.

A second key finding about those asymmetries is their sign: U.S. inflation forecasts
are positively skewed; only in a few occasions over the last four decades downside risks
predominated (see Figure 11). The difference between the mean and the mode of the
combined probability forecasts, a simple measure of asymmetry, also corroborates those
stylized facts.

In terms of their evolution over time, the balance of risks surrounding inflation forecasts
has fluctuated significantly in the last four decades. Such fluctuations are however more
difficult to interpret and identify with specific historical episodes than the ones of inflation
uncertainty. Notwithstanding this, the strong upside risks to inflation throughout the
1980s, particularly in the mid-1980s, stand out. We provide an interpretation for those
fluctuations in the next section, with the help of additional historical evidence.

The skewness of the combined probability forecast is also linked to the moments of the

individual densities as follows (see Appendix B for details):?*

SK(me):=E |(me — E(?TC))S] =FE[SK (m;)| + SK[E(m)| +3E[Var (my) (E(ng) — E(re))]

24For the sake of exposition, in this subsection we will use the term skewness SK(m) to denote the
non-normalized central third moment, instead of the standard skewness coefficient used in the previous

sections.
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The first and second components are the average individual skewness and the skewness
of the distribution of individual means, in a similar fashion to the variance decomposition.
The skew decomposition however has an additional component: the covariance between
the distance of the individual forecaster’s mean to the combined mean in that survey round
and the variance of that forecaster. Intuitively, this third component reflects the impact
that the different degrees of uncertainty among forecasters can have via its correlation
with the disagreement with respect to the combined forecast. For instance, the term
would vanish if all forecasters had the same degree of uncertainty.

In contrast to the variance decomposition, the average skew of the individual forecasts
does not appear to be a reliable proxy for the asymmetries in the combined probability
forecast. The correlation between the skewness of the combined distribution and its three
components is relatively limited and suggests that inferring the sources of the risk assess-

ment embodied in the combined distribution is quite challenging (see Table 3).

4.3 Inflation risks and the central tendency of inflation expectations

We here investigate how changes in (mean) inflation expectations affect inflation risks
(uncertainty and the risks assessment), thereby assessing the evolution of inflation density
forecasts over the last four decades. Figure 12 depicts mean inflation expectations together
with inflation uncertainty and the degree of skewness. The relation between inflation
uncertainty and the level of expected inflation is positive, while perceived skewness and
inflation exhibit a weak negative relationship.

As regards the volatility of the first three moments of inflation expectations between
1969 and 2006, mean expectations have been the most volatile (see variances in the prin-
cipal diagonal in Table 4),%° and inflation uncertainty have been much less volatile than
the perceived asymmetry in inflation risks. In terms of co-movement, movements in mean
inflation expectations appear to be more related to changes in inflation uncertainty than
to changes in the perceived asymmetry in inflation risks. Uncertainty and skewness in
inflation forecasts have however shown some co-movement, possibly reflecting the upward
movement both higher-order movements experienced in the 1980s and the decline there-
after.

To assess the statistical significance of these correlations, Table 5 reports some bivariate
linear regressions. As robustness checks, we use the quarterly time series introduced above
for the sample 1981Q1-2006Q1, as well as an additional central tendency proxy, the average

of individual means. The level of expected inflation significantly contributes to explaining

%5 Results using the average and the median of the means of the individual probability forecasts, or the
quarterly time series that combines current and next year forecasts were qualitatively similar. They are

therefore omitted here but available upon request.
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movements in inflation uncertainty, which confirms the positive relationship between the
level of a variable and the uncertainty surrounding its forecast. Such a relationship, is
however limited (the R’ in the bivariate regressions are about 0.4), which indicates that
a significant part of the variation in the uncertainty surrounding inflation expectations
is explained by other factors. Asymmetries in inflation risks appear to be more related
to measures of inflation uncertainty, particularly average uncertainty, than to the level of
inflation expectations.

The key message from these results is that, although the first three moments of infla-
tion expectations do co-move, such a co-movement is limited. To characterize changes in
inflation expectations the mean, or any central tendency measure, is therefore not suffi-

cient.

5 Inflation scares and inflation risks in the 1980s

A thorough analysis of inflation expectations must comprise not only point predictions but
also perceived inflation risks. Previous sections show that our measures of inflation risks
appeared to be much higher in the 1980s that the level of expected (or actual) inflation
suggests. In the 1980s the U.S. bond market also experienced some turbulent episodes
that have been interpreted as inflation scares.?® Point forecasts offer little information
about why bond premia rose. We exploit the link between perceived inflation risks and
the premia embodied in bond yields, and show that a thorough assessment of inflation
expectations sheds new light on the bond market inflation scares in the 1980s.

Under Chairman Volcker, the U.S. Federal Reserve pursued a protracted disinflationary
policy during the 1980s. The Volcker disinflation is a crucial episode in the history of U.S.
monetary policy, and remains the subject of much research and discussion. Goodfriend
and King [2005] document that the FOMC saw credibility as fundamental for the success
of the disinflation and monitored long-term interest rates as indicators of that credibility.”

It is surprising that a thorough analysis of perceived inflation risks during the Volcker
disinflation remains missing. This paper aims at filling that void. Although long-term
interest rates are often used as indicators of inflation expectations, changes in nominal
yields may reflect other factors beyond inflation expectations. The SPF forecasts are a
more direct source of information about private sector’s inflation expectations, and offer
information about both point predictions and inflation risks.

Our analysis provides an assessment of the evolving credibility of the Fed s disinflation-

26See Goodfriend [1993], Giirkaynak et al. [2005] and Orphanides and Williams [2005].
2TBall [1994] established the need for imperfect credibility of a disinflation to cause output losses even

in the presence of nominal rigidities. See also Ball [1995].
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ary policy. Modeling the interaction between the Fed s policy and private sector beliefs
about inflation is however beyond the scope of this paper. Nor do we provide a thorough
historical account of all the events surrounding monetary policy decisions (see Goodfriend
[1993] and Goodfriend and King [2005] are excellent contributions). We combine informa-
tion from both surveys and long-term interest rates, and interpret the inflation scares in
the bond market as particular episodes in the process of gaining credibility.?® The changes
in inflation risks around the time of the bond market inflation scares suggests a close link
between the two, and a taxonomy of those inflation scares on the basis of direct evidence
on private sector inflation beliefs emerges as a by-product of our interpretative historical
analysis.

Figure 13 shows the policy and long-term interest rates, actual and expected inflation
and our measures of inflation risks over the 1980s. The inflation scares are represented
by shadowed areas (see top chart). Figure 13 (middle chart) depicts survey measures
of actual and expected inflation, both over short-term (four quarters ahead) and long-
term horizons. Mean expected inflation rose sharply at the end of the 1970s and stood
above realized inflation during most of the 1980s, which lends support to the thesis of
a very slow improvement in Fed’s credibility. Short and long-term inflation expectations
however declined in the first half of the 1980s and remained broadly unchanged for most
of the second half. This dynamics suggests that the inflation scares in the 1980s need
to be explained by other features of inflation expectations. Inflation uncertainty and the
inflation skewness exhibited significant fluctuations in the 1980s, and rose sharply around
the time of the inflation scares in the bond market. We analyze their movements in each

of the inflation scare episodes.

Early stages of the disinflation: the 1979-80 and the 1981 inflation scares

In the summer of 1979 oil price developments had greatly worsened the inflation outlook.
The Fed switched to non-borrowed reserve targeting and raised rates at its October meeting
to fight the rise in inflation, but the tightening stopped at the end of the year with the
federal funds rate around 13.5% and the ten-year rate at 10.5% (see Figure 13). By
February 1980 the long-term rate however edged up above 13%, triggering further interest
rate hikes to control the rise in inflation expectations and related premia. Higher policy
rates helped contain inflation but also triggered a recession that halted the Fed tightening.
By late 1980, the ten-year bond rate had reversed the 2 percentage point decline associated
with the recession and was again above 12%. Moreover, despite having the federal funds

rate at 19% in 1981, the Fed faced a second inflation scare: long-term interest rates rose

281t has to be borne in mind that matching movements of financial and survey data is quite difficult

given their different frequency.
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by 3 percentage points between January and October 1981 to a peak of 15%.

Inflation expectations did rise significantly over that period, thereby explaining the
inflation scares of 1979-80 and 1991 (see Figure 13). (Mean) expected inflation steadily
rose between 1979 and 1981, reaching two digits in 1981 despite the decline in realized
inflation since 1980. Inflation uncertainty rose sharply to a historical peak in 1980, to
moderate somewhat later on. The variance decomposition shown in Figure 8 suggests
that rising inflation uncertainty was accompanied by a rise in both disagreement about
the inflation outlook and the individual uncertainty surrounding that outlook. Inflation
risks were also tilted towards higher inflation outcomes, as indicated by the upward shift

in the skewness of the combined probability forecast.

The 1983-84 inflation scare

Two years after the start of the disinflationary policy in 1980, inflation was coming grad-
ually down and the Fed somewhat relaxed its policy stance. By February 1983, the funds
rate was around 8.5% and the ten-year rate remained steady at around 10.5%. A few
months later, however, with economic activity gaining momentum, the Volcker Fed was
confronted with another inflation scare. Long-term rates started to rise again, although
annualized (quarterly) inflation was below 5% throughout most of 1983 and 1984, that
is about 4 or 5 percentage points lower than in 1981. Long-term rates reached 13.5% in
mid-1984, only about a percentage point lower than their October 1981 peak. The Fed
raised rates to resist the on going inflation scare. Long-term rates, however, did not start
falling until the second half of 1984, and did so very gradually, returning below the 10%
level only in the last months of 1985. The containment of the 1983-84 inflation scare was
arguably one of the most remarkable achievements of the Volcker Fed (Goodfriend [2005]).

Our analysis reveals that the 1983-84 inflation scare was significantly different from
the two previous scares in several crucial aspects. Movements in inflation expectations
around the time of the 1983-84 bond market inflation scare were somewhat surprising.
Inflation expectations (as measured by the mean of the combined distribution) actually
declined during most of the 1980s and particularly between the first quarters of 1983 and
1986 (by more that 1.5 percentage points, see Figure 13). However, despite the decline
in the (mean) inflation expectations, inflation risks edged strongly upwards since early
1983 and remained high over most of the period of the bond market scare. The rise in
inflation uncertainty and the risk assessment suggests that private agents believed that
the reduction in inflation was temporary, and a return to high inflation likely. Therefore,
in sharp contrast to the two previous inflation scares, the then imperfect credibility of the
Fed was reflected not in the usually considered point estimates of inflation expectations

but in the perceived inflation risks (uncertainty and in particular asymmetry).
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The 1987 inflation scare

In 1987, the Volcker Fed faced a fourth inflation scare. With inflation rising for the first
time in the decade, this inflation scare was marked by a sharp but relatively brief, rise in
long-term bond yields by 2 percentage points between March and October 1987. (Mean)
inflation expectations reacted little to the rise in actual inflation rates, allowing for the
gap between the two to close by early 1988. Longer-term inflation expectations appeared
to move only slightly upwards around 1987. At the same time, perceived inflation risks

rose again from early 1986, and only declined significantly once the scare was contained.

Assessment

The analysis of central tendency and inflation risk measures during the inflation scares of
the 1980s illustrates that changes in inflation expectations may be quite complex. More-
over, to correctly interpret movements in inflation expectations, the analysis of higher-
order moments of inflation forecasts is necessary. Our discussion of the four inflation
scares confronted by the Volcker Fed in the 1980s shows that such episodes were triggered
by distinct changes in inflation expectations. The first two inflation scares reflected a
rise in both central tendencies of and the risks surrounding inflation expectations. The
information provided exclusively by the point estimates is however insufficient, if not mis-
leading, to explain the 1984 scare; the rise in long-term rates around 1984 was mainly
triggered by higher perceived inflation risks, most likely affecting risk premia. Although
the relationship between the higher-order moments of inflation forecasts and the risk pre-
mia embodied in bond yields is likely to be rather complex, this section shows that a

thorough analysis of probability forecasts can shed new light in this regard.

6 Inflation risks and the macroeconomy

A reason for monitoring inflation expectations is that, besides the inflation outlook, they
comprise information about the general macroeconomic outlook. We here show that pol-
icymakers and researchers can obtain valuable information about the general macroeco-
nomic situation by monitoring inflation risks.

We now ask how macroeconomic variables influence inflation risks. Inflation uncer-
tainty and actual inflation display the expected positive relationship (see Figure 14). Given
the observed inflation rate, a noticeable feature of Figure 14 is that, both for a brief pe-
riod (around 1980 following the second oil crisis) and over a more protracted period in
the second half of the 1980s, inflation uncertainty was abnormally high. Such outliers

correspond to the spikes in inflation uncertainty shown in Figure 8 and analyzed in the
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previous section.

The relation between perceived inflation skewness and actual inflation, as for expected
inflation, instead appears to be weak (see Figure 14). Actual inflation does not shed any
light on two puzzling features of our inflation skewness measures (see also Section 4.2
and Figure 11). The SPF density forecasts have only exhibited downside risks on a few
occasions: with high inflation levels (for example in 1974-75 and in 1980) but also at more
moderate rates of inflation (for example in 1990-91), which suggests that negative skew in
inflation forecasts may be capturing other factors beyond the level of actual or expected
inflation.

The assessment of inflation risks appears to be more related to economic activity than
to the level of inflation. Figure 15 shows our measures of inflation risks together with two
standard measures of excess capacity: (i) an HP-filtered output gap measure for the (log
of) actual chain-weighted real output; (ii) episodes of economic contraction according to
the NBER Business Cycle Dating Committee, represented as shaded areas.

Ahead of a recession, inflation forecasts tend to exhibit negative skewness. This ten-
dency indicates a stronger business cycle response of inflation expectations than considered
so far: point forecasts of inflation tend to decline with lower expected growth but busi-
ness cycle conditions also influence the assessment of inflation risks. Moreover, in the
three available episodes of contracting real GDP in the sample, inflation uncertainty also
declined ahead of the recession. During recession periods uncertainty about future infla-
tion however appears to rise. Outside recession periods, over the 1980s a widening of the
output gap seemed to have a positive impact on both inflation uncertainty and upside
risks, but the protracted expansion of the late 1990s appeared to have little impact on
perceived inflation risks. The business cycle influence on inflation risks therefore seems to
have significantly weakened.

To investigate more formally the link between inflation risks and macroeconomic vari-
ables, we regress the variance of the combined distribution and its two components, namely
average uncertainty and disagreement, and the two measures of risk assessment, skewness
and the distance between the mean and the mode of the combined distribution, on several
macroeconomic variables . Specifically, together with the level of inflation, as nominal vari-
ables we consider the (squared) change of inflation as a proxy for the volatility of inflation,
and as real economy variables we consider the output gap measure used above, and the
probability of recession and the average uncertainty about real GDP growth (four quar-
ters ahead) as reported by SPF panelists (see Table 6). For each of those variables Panel
A reports the coefficients from bivariate regressions. To assess the robustness of those
estimates, Panels B and C respectively control for actual inflation and (mean) expected

inflation.
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The squared change of inflation appears to be a robust determinant of average un-
certainty, even after controlling for actual and expected inflation. This result lends some
support to the link between uncertainty and inflation volatility. Such a link is however less
clear for the variance of the combined distribution, and even less so for disagreement, par-
ticularly after controlling for inflation or inflation expectations the relationship weakens
considerably or becomes insignificant. The volatility of inflation seems to have no effect
in the asymmetry of the perceived inflation risks either.

As regards economic activity, inflation risks show no relationship with the output gap
measure. Inflation risks instead respond to uncertainty about growth and the probability of
recession over the horizon of the inflation forecast, which underscores the forward-looking

nature of the SPF inflation risks.

7 Concluding remarks

This paper provides stylized facts about perceived inflation risks. We analyze inflation
uncertainty and inflation skewness in forty years of probability forecasts from the Survey
of Professional Forecasters (SPF) using a new methodology. Our estimation comprises two
methodological contributions. First, our fitting criterion is a small departure from maxi-
mum likelihood that provides the needed robustness to cope with the particular features
of the SPF data. Second, the use of a parsimonious but flexible theoretical density func-
tion, Azzalini’s [1985] skew-normal. Compared to standard approaches for the estimation
of SPF density forecast, both methodological contributions lead to substantial accuracy
gains.

The main result from our analysis is that moving beyond point estimates of inflation
expectations is necessary. To provide a thorough account of private sector beliefs about the
inflation outlook, inflation risks provide additional insights. As an example, we illustrate
how the movements in our inflation risk measures in the period of the Volcker disinflation
shed some new light on the inflation scares in the U.S. bond market in the 1980s.

Our results suggest that a thorough analysis of the SPF probability forecasts may
provide additional insights not only about how inflation expectations may change over
time but also about developments in other macroeconomic and financial variables. We
hope that the methodology developed in this paper and our analysis of the dynamics of
inflation beliefs in the Volcker disinflation period could be a first step in that process.
Our findings point to business cycle analysis and the estimation of inflation risk premia in

bond yields as interesting avenues to explore.
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A. On the optimal fitting criterion for the SPF histograms

A.1. Shortcomings of (unweighted) least squares

Most literature fitting parametric densities to the SPF histograms uses least squares as
fitting criterion, i.e. minimizing the sum of the squared deviations of the observed prob-
abilities with respect to the theoretical ones over the set of intervals. More formally,
LS = Zfzo (s — pi(0))? . Minimizing the LS criterion (although consistent) is not effi-
cient, for it does not use all available information. Generalized least squares (GLS), a stan-
dard (efficient) approach, would suggest minimizing GLS = (p — p(0)) S~ (P — p(0))
with respect to o where S~! denotes the inverse of the covariance matrix of the frequen-
cies vector, p. The multinomial framework outlined in the main text provides a direct
identification of the structure of the matrix S without ad-hoc assumptions. Specifically,

the structure of the covariance in a multinomial model is of the form

po(1 —po)  —pop1 e —popr
—pop1 p1(l—p1) e —p1PI
S ) . .
—PpopI-1 e pr-1(1 —=pr—1) —pipr—1
—Popr pr(1—pr)

The matrix S is singular (as the sum of frequencies p; must add up to one). Its Moore-

Penrose inverse, S~, has the following structure 2?
1/pp 0 - 0
0 .
S_ =
0
0 - 0 1/pr

This evidence suggests using the weighted least squares (WLS) estimator. Minimizing

WLS is algebraically equivalent to minimizing the Pearson chi-square criterion

~

x2_y Biopile)? 5
—~  pio)
The unknown vector p(p) in the denominator could be replaced by its estimate, p, to
obtain the modified chi-square criterion of Neyman [1949].
The fundamental difference between LS and W LS is the weighting of the fitting errors.

LS assigns equal weighting to the fitting errors for each interval. As shown in equation (5),

2Note that the structures of the S and the S~ matrices come directly from the interpretation of the

reported histograms as the realizations of a multinomial variable.
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the efficient criterion W LS instead weighs the fitting errors by the inverse of the observed
(or fitted) frequency . If the frequencies were constant across the intervals ¢, both LS
and W LS would provide the same results. Formally, in terms of the above expressions,
for WLS (or NM?) and LS to be equivalent, the matrix S~ should be proportional to
the identity matrix, thereby providing equal weighting for all the intervals. In the SPF
probability distributions the observed relative frequencies in each interval are far from
similar, they are relatively bell-shaped. Assigning the same weight to the fitting errors at
the center of the distribution and at the tails, as the LS criterion does, does not make
efficient use of all the information contained in the SPF data.

Equal weighting is therefore a fundamental shortcoming of the commonly-used LS
criterion. In contrast, the chi-square criteria derived above provides consistent, asymp-
totically normal and efficient estimates for the vector of distribution parameters. Those
properties, which are crucial to recover the underlying density forecasts, are provided by

all power divergence estimators.

A.2. Power divergence estimators

We here present in greater detail the main properties of the family of power divergence
estimators, which encompasses the X2 and NM? criteria discussed above. We focus on
the properties that are more relevant for our purpose in this paper, but Cressie and Read
[1988] provide a general assessment.

Recall that the family of minimum power divergence estimators is defined in general

terms as the estimates obtained by minimizing the expression

ren = 3| () - ®

with respect to . The family is thus indexed by the parameter 7 € R.

To grasp the broadness of this family, note that, if 7 = —2 for instance, equation (6)
yields the Neyman chi-square criterion, while for 7 = 1 one obtains Pearson’s X2.30

Serfling [1980] shows that the estimate obtained from minimization of the likelihood
ratio G2 (see equation (2)) is asymptotically equivalent in probability to the estimate
obtained by minimizing the standard Pearson chi-square criterion X? discussed above.
We have however argued that small sample properties are also fundamental in the choice
of the optimal estimator. The figures below show the relative performance of some of the

estimators discussed above based on the Monte Carlo experiment detailed in Section 3.1 .

30 Moreover, the family encompasses other  widely-used estimators such as  the
2
Hellinger distance (I*I/Q =2 Zf:o [\/@' — \/pi(.t_))] > and the Kullback-Leibler divergence

(1—1 =lim,, " = YI_, [pz-(g) log 244} + (p; —pf(e))])-
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[Figure AI about here]

B. Decomposing the skewness of the combined forecast

The third moment decomposition used in the main text is derived in a similar way to
the standard ANOVA decomposition (with Y being a conditioning variable denoting the

forecaster), as follows:

S(X) = E|(X - E[X))]
= EB[B[(X - EX)*Y]] (7)
= EB|B[(X - EIX|Y]+ BIX|Y] - E[X]|7]]
= EB[B[(X-EBXY])* Y]]+ 3B [(BIX]Y] - EIX])) E [(X - EIX|Y])* Y]]
+ 3B |(BIX|Y] - E[X))’ E[(X - E[X|Y]) Y]]
+ BB [(BIX)Y] - BIX)?*|Y]] (8)
= ESEN)+ S(EXY]) + 3E[V (X]Y) (EX]Y] - E[X])] 9)

Step (7) is obtained applying iterated expectations. Step (8) follows from the expansion
of the power and the measurability of (E[X|Y]|— E[X]) with respect to the c-algebra
induced by Y. Finally, step (9) is obtained by observing that the third term vanishes,
since (E[X|Y] — E[X])? can be taken out of the expectation (due to its measurability)

and the remaining factor is equal to zero.

C. Monte Carlo evidence

This Appendix provides additional evidence on the accuracy gains in the estimation of the
first two moments of inflation expectations from the methodology presented in this paper.
Specifically, the results reported in the columns in each of the tables below correspond
to the power distance estimator (PDE) using a skew-normal density (PDE(7*), SN)), the
power distance estimator using a normal density (PDE(7*), N), the standard least squares
criterion using the skew-normal density (LS (SN)) and the least squares criterion using the
normal density (LS (N)). Hence, the first column represents our preferred methodology
while the fourth represents the method most frequently used in the literature. The relative

accuracy of the different methodologies is measured by computing mean square errors
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(MSE), mean absolute errors (MAE), and the empirical bias obtained from 1000 simulated
samples of the different sizes (i.e. the different number of random draws) in order to check
the robustness of the proposed methodology. We highlight some key results below. In
general they are consistent across samples sizes so we omit specific references to the sample
size and focus on additional comparisons.

Our estimator PDE(7*=0.2) outperforms (unweighed) LS, thereby providing some
quantitative support for our theoretical argumentation that both kinds of estimators are
consistent but only power divergence estimators are efficient. Moreover, these gains appear
to be also robust to the choice of model distribution to fit the data: either the SN (compare
columns 1 and 3 for the mean and columns 5 and 7 for the variance; see also Figure 2) or
the N distribution (compare columns 3 and 4 for the mean and columns 7 and 8 for the
variance).

The gains from using the SN shown in Figure 3 were more limited than for the
PDE(7*=0.2), but when a less efficient method, such as LS, is used, the relative gains from
employing the SN are much larger (compare columns 3 and 4 for the mean and columns
7 and 8 for the variance). Another important results is that even in small samples (i.e.
discretizations based on relatively small number of draws) the simulations suggest that
the SN is capable of accommodating deviations from symmetry without compromising

the estimation of the first two moments.

Table C.1. DGP: SN (mean p=3, Standard deviation =1, Skew ;=0.6)

Mean [ Standard deviation O
Sample size PDE, SN PDE, N LS, SN LS, N PDE , SN PDE, N LS, SN LS, N
*
n=20 MSE 5.32 5.53 7.19 9.84 3.92 4.09 4.64 6.50
MAE 0.19 0.19 0.22 0.26 0.16 0.16 0.18 0.21
*
bias 1.47 -0.26 -4.41 -13.2 -3.20 -1.88 -5.87 -12.3
%
n=>50 MSE 2.16 2.26 2.59 4.91 1.38 1.65 2.05 2.84
MAE 0.12 0.12 0.13 0.18 0.09 0.10 0.12 0.14
*
bias 1.26 0.83 -1.99 -13.5 -1.35 0.44 -2.71 -8.12
*
n=100 MSE 1.06 1.06 1.40 3.85 0.70 0.80 1.08 1.56
MAE 0.08 0.08 0.10 0.16 0.07 0.07 0.08 0.10
*
bias 0.99 0.76 -0.82 -15.0 -0.53 1.82 -1.98 -6.15
*
n=200 MSE 0.54 0.62 0.72 3.00 0.45 0.81 0.52 1.02
MAE 0.06 0.06 0.07 0.15 0.06 0.07 0.06 0.08
*
bias 2.23 1.66 0.61 -15.0 2.55 5.07 -0.23 -6.31

*
Reported figures are scaled up by 100.
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Table C.2. DGP: SN (mean p=3, Standard deviation o=1, Skew 7y;=0.3)

Mean [ Standard deviation O

Sample size PDE, SN PDE,N LS,SN LS,N | PDE,SN PDE,N LS,SN LS, N
n=20 Mse™ 5.74 5.46 6.21 8.11 3.00 3.61 4.57 5.62
MAE 0.19 0.19 0.20 0.23 0.14 0.15 0.17 0.19

bias™ 1.29 -0.11 -1.46 -6.79 -3.08 -1.89 -3.45 -8.70

n=50 MSE* 2.07 2.33 2.90 3.79 1.40 1.39 1.86 2.26
MAE 0.11 0.12 0.14 0.16 0.09 0.09 0.11 0.12

bias™ 0.49 -0.14 0.50 -6.81 -0.85 -0.13 -1.03 -4.98

n=100 Mse™® 1.01 1.05 1.66 2.19 0.65 0.69 0.98 1.19
MAE 0.08 0.08 0.10 0.12 0.07 0.07 0.08 0.09

bias* 0.47 0.17 -0.36 -7.28 -0.70 0.26 0.16 -3.04

n=200 mse™ 0.61 0.56 0.78 1.41 0.47 0.57 0.48 0.60
MAE 0.06 0.06 0.07 0.10 0.06 0.06 0.06 0.06

bias™ 0.95 1.26 0.61 -7.50 2.30 3.51 0.03 -2.43

*Reported figures are scaled up by 100.
Table C.3. DGP: SN (mean p=3, Standard deviation 0=1, Skew 7y;=0)
Mean [t Standard deviation O

Sample size PDE, SN PDE,N LS,SN LS,N | PDE,SN PDE,N LS,SN LS, N
n=20 MsE™® 5.39 5.15 6.11 8.33 3.51 3.47 4.49 5.49
MAE 0.18 0.18 0.20 0.23 0.15 0.15 0.17 0.20

bias™ 1.45 -0.53 0.70 0.18 -2.78 -1.58 -2.23 -5.89

n=>50 MsE™® 2.19 2.25 3.08 3.42 1.17 1.19 1.92 2.10
MAE 0.12 0.12 0.14 0.15 0.09 0.09 0.11 0.11

bias™ 0.88 0.23 0.14 0.96 -1.26 -0.52 0.13 -3.11

n=100 Mse™ 1.07 1.20 1.49 1.64 0.62 0.57 1.00 1.07
MAE 0.08 0.09 0.10 0.10 0.06 0.06 0.08 0.08

bias™ -0.02 0.38 -0.03 -0.32 -0.94 -0.24 1.10 -1.40

n=200 MSE”< 0.60 0.56 0.82 0.90 0.41 0.46 0.52 0.52
MAE 0.06 0.06 0.07 0.08 0.05 0.05 0.06 0.06

bias ™ 0.50 -0.30 -0.06 -0.38 1.17 2.52 0.78 -0.98

*
Reported figures are scaled up by 100.
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Table 1: Estimation errors

for the skewness parameter

Degree of Sample size
skewness n=20 n=50 n=100 n=500 n=1000
Mean Sq. Error* 50.6  23.9 11.0 5.9 2.6
v=0 Bias -0.01  -0.01 0.03 0.02 0.03
Monte Carlo St. Dev. 0.71 0.49 0.33 0.24 0.16
Mean Sq. Error* 48.5 22,0 10.9 5.4 2.1
v=0.3 | Bias -0.05  0.04 0.02 0.03 -0.01
Monte Carlo St. Dev. 0.69 0.47 0.33 0.23 0.14
Mean Sq. Error* 41.8  16.0 8.8 6.7 5.0
v=0.6 | Bias -0.13  0.02 0.04 0.03 0.02
Monte Carlo St. Dev. | 0.63  0.40 0.29 0.26 0.22
Mean Sq. Error* 30.3 6.7 2.4 1.5 0.9
v=0.9 | Bias -0.20  -0.05 0.03 0.06 0.08
Monte Carlo St. Dev. 0.51 0.26 0.15 0.11 0.05

>kchortcd figures are scaled up by 100.

Results are based on our proposed fitting criterion PDE(T*:O.Q).

Table 2 : Correlation between measures of inflation uncertainty

Qlsurveys (1969Q1-2006Q1) || Variance (Agg. dist.) | Average uncertainty | Disagreement
Variance (Agg. dist.) 1.00

Average uncertainty 0.90 1.00

Disagreement 0.74 0.54 1.00

Agg. Dist denotes the average of the individual probability forecast across panelists.

Average uncertainty denotes the average of the variances of the individual probability forecasts.

Disagreement is measured by the variance of the means of the individual probability forecasts.
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Table 3 : Co-movement between measures of skewness

Q1lsurveys (37obs) Skewness (Agg. dist.) | Average skewness | Skew of means | Cov. mean and variance
Skewness (Agg. dist.) 1.00

Average skewness 0.28 1.00

Skew of means 0.55 0.03 1.00

Cov. mean and variance 0.78 0.39 0.24 1.00

Table 4: Correlation between the moments of inflation forecasts

Agg. Mean | Agg. Variance | Average uncertainty | Agg. Skew | Mean-Mode
Agg. Mean (5.45)
Agg. Variance . 0.59 (0.37)
Average uncertainty 0.48 0.88 (0.15)
Agg. Skew 0.07 0.54 0.60 (1.12)
Mean-Mode -0.02 0.42 0.53 0.98 (0.40)

Q1 surveys, 38 observations 1969Q1-2006Q1. Figures in main diagonal denote variances of the series.

Table 5: Level, uncertainty and risk assessment in inflation expectations

Uncertainty measures

Risk assessment measures

Variance (Agg. Dist.) | Average uncertainty | Skew (Agg. Dist.) | Mean-Mode
Mean (Agg. Dist.) 0.24** 0.18** 0.10 0.03
Average of means 0.24** 0.18™* 0.10 0.03
Variance (Agg. Dist.) 0.85** 0.40*
Average uncertainty 1.12%* 0.54**

Each cell reports a regression of the risk measures on the first column variables, qurarterly data.1981Q1-2006Q1.

*
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Table 6: Inflation risks and macroeconomic variables

Variance  Average uncertainty Disagreement Skewness Mean-Mode
Panel A: Bivariate regressions (each cell represents a separate regression)
Inflation 0.19%* 0.16** 0.05%* 0.04 -0.04
Ainflation-squared 0.89* 0.63* 0.26* 0.41 0.13
Output gap -0.82 -1.06 0.33 0.82 -3.20
Prob. recession 0.04** 0.04** 0.01%* 0.04* 0.02*
Growth uncertainty 0.98%* 0.83%* 0.20%* 1.06** 0.53**
Panel B: Controlling for actual inflation
Ainflation-squared -0.43 -0.41* -0.04 0.34 0.31
Output gap 5.47 3.78 1.66 -0.57 -3.27
Prob. recession 0.04** 0.03** 0.01%* 0.04* 0.02
Growth uncertainty 0.78%* 0.70** 0.15%* 1.26%* 0.69**
Panel C: Controlling for expected inflation
Ainflation-squared -0.55* -0.51%* -0.09 -0.34 -0.15
Output gap 4.94 3.47 1.57 1.62 -1.59
Prob. recession 0.02 0.02% 0.01 0.03 0.02
Growth uncertainty 0.65** 0.62** 0.10* 1.17%* 0.63**

k%

and *denote significance at 1% and 5% level (Newey-West corrected standard errors upto a year)

Prob. recession refers to the probability of negative growth four quarters ahead reported in the SPF.

Growth uncertainty refers to the estimated average uncertainty from the SPF probabilistic forecast.

w w Pa’e Sevle“N 825



Figure 1: Examples of skew-normal densities

A=0 (y1=0) — A=15(y1=03)
------- A=-2.6 (y1=-0.6) — A=6.3 (y1=0.9)

Probability

0.0
-3.5 -2.5 -1.5 -0.5 0.5 1.5 2.5 3.5

The densities depicted have zero mean and unit variance

Figure 2: Fitting criterion gains (MSE) Figure 3: Density gains (MSE)
y1=0.9  y1=0.6  y1=03  y1=0 y1=0.9  y1=0.6  y1=0.3 y1=0
0% 10%
‘ O Mean B Standard deviation‘
-20% - - 0%
-40% - -10% A
O Mean M Standard Dev1at10n
-60% -20%
Figure 4: Overall gains (MSE) Figure 5: Overall gains from LS,N (MAE)
y1=0.9  y1=0.6  y1=0.3  y1=0 y1=0.9  y1=0.6  v1=0.3 y1=0
0% 0%
-20% -20% \J‘Ju
-40% 4 | I o == . A40% +4 -
0%+ -60% 1~/ @Mean M Standard Deviation | -
‘ O Mean B Standard Deviation‘
-80% -80%

Note: For both the estimated mean and variance of the distribution, the charts depict the percentage reduction in the
estimation error (mean absolute error (MAE) and mean square error (MSE)) of our methodology with respect to the
least squares (LS) fitting criterion and/or the standard normal (N) density. Specifically, Figure 2 reports the reduction in
the MSE from using our fitting criterion instead of LS for the Skew-Normal (SN) distribution, Figure 3 for using the SN
instead of the N with our fitting criterion, and Figures 4 and 5 from using our fitting criterion and the SN instead of LS
and the N. Results are based on 1,000 simulations from SN distributions with four different degrees of skewness v;.
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Figure 6: Skew-normal versus normal fitting
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The histogram is from forecaster 541 in the 2005 Q3 SPF

Figure 7: Estimated uncertainty and number of active intervals reported
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Figure 8: Variance of the combined distribution, average uncertainty and disagreement
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Figure 9: Skewness (combined forecasts)  Figure 10: Skewness (individual forecasts)
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Figure 11: Alternative measures of skew (combined distribution)
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Figure 13: Interest rates, inflation expectations and inflation scares
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Note: Shadowed areas reflect periods of inflation scares in the bond market. Inflation expectations denote the mean
of the combined distribution for current-year inflation; realized inflation is the year-end rate of growth in the GDP

deflator; long-term inflation expectations are from the Philadelphia Fed. The bottom chart depicts the variance and
skewness from the combined distribution for current-year inflation.
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Figure 14: Inflation and inflation risks
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Figure 15: Inflation risks and economic activity
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Figure Al: Relative performance of alternative estimators, MSE
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