
Anatomy of the Phillips Curve:

Micro Evidence and Macro Implications

Luca Gagliardone
∗

Mark Gertler
†

Simone Lenzu
‡

Joris Tielens
§

November, 2023

Abstract

We develop a bottom-up approach to estimating the slope of the primitive

form of the New Keynesian Phillips curve, which features marginal cost

as the relevant real activity variable. Using quarterly microdata on prices,

costs, and output from the Belgian manufacturing sector, we estimate

dynamic pass-through regressions that identify the degrees of nominal and

real rigidities in price setting. Our estimates imply a high slope for the

marginal cost-based Phillips curve, which contrasts with the low estimates

of the conventional unemployment or output gap-based formulations in the

literature. We reconcile the difference by demonstrating that, although the

pass-through of marginal cost into inflation is substantial, the elasticity of

marginal cost with respect to the output gap is low. We also illustrate the

advantage of a marginal cost-based Phillips curve for characterizing the

transmission of supply shocks to inflation.
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1 Introduction

Understanding the relation between inflation and real activity over the business

cycle continues to be an important though unresolved matter in macroeconomics.

At the heart of this inquiry lies the challenge of estimating the slope of the Phillips

curve. To illustrate the issue, let us consider the New Keynesian version of the

Phillips curve (NKPC), which is now the textbook formulation in the literature.

Let 𝜋𝑡 denote inflation and 𝑦𝑡 the output gap, the percentage difference between

real output and its natural level. Then (what we will refer to as) the conventional

form of the NKPC is given by:

𝜋𝑡 = ^ 𝑦𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , (1)

where𝑢𝑡 is typically referred to as a cost-push shock, and 𝛽 is a subjective discount

factor, typically a parameter close to unity. The NKPC asserts that inflation

depends positively on both𝑦𝑡 , which is interpreted as a measure of excess demand,

and on expected future inflation. The main object of interest is ^, the slope

coefficient on the output gap.

There are two interrelated sets of issues involved in uncovering ^. The

first set revolves around the econometric identification of this parameter. First,

as emphasized by McLeay and Tenreyro (2020), the output gap is an endogenous

object. If the central bank acts to adjust 𝑦𝑡 to stabilize 𝜋𝑡 in response to positive

cost-push shocks, the estimate of ^ will be biased downward due to the negative

correlation between 𝑦𝑡 and 𝑢𝑡 . Given the absence of good instruments for 𝑦𝑡 , the

estimation of ^ using aggregate time-series data is problematic (Mavroeidis et al.

2014). Another identification issue involves trend inflation. The specification

given by equation (1) presumes that trend inflation is constant. However, as

emphasized by Hazell et al. (2022) and Jørgensen and Lansing (2023), shifts in

trend inflation may confound the identification of the Phillips curve. For instance,

if trend inflation decreases as output declines, and the regression model does not

account for this correlation, the estimate of ^ will be upwardly biased.

These identification challenges have led researchers to employ regional data

1



to estimate ^. Recent examples include Hooper et al. (2020), McLeay and Tenreyro

(2020), and Hazell et al. (2022).
1
Importantly, Hooper et al. (2020) and Hazell et al.

(2022) allow for time fixed effects to control for shifting trend inflation. In the

latter study, this identification approach yields an astonishingly small estimate

of ^, which suggests that the Phillips curve is “flat”. This view has become the

conventional wisdom, at least for the pre-pandemic period.

The second set of considerations pertains to both the relevantmeasure of real

activity that enters the Phillips curve and, consequently, the interpretation of the

slope coefficient^. In the underlying theory, firms set prices in response to current

and anticipated movements in marginal cost. Thus, as emphasized by both Galí

and Gertler (1999) and Sbordone (2002), the primitive form of the NKPC features

real marginal cost (in percent deviations from trend) entering as the real activity

variable. In fact, the conventional formulation of the NKPC in equation (1) only

holds under specific conditions that establish a proportional relationship between

marginal cost and the output gap. Among other things, wages must be perfectly

flexible.
2
If these conditions are violated, then the output gap may not serve as

an adequate proxy for real marginal cost, typically leading to a downward bias in

the estimate of ^.3 Moreover, even if all conditions that establish a proportional

relationship are approximately met, it is crucial to recognize that the output

gap-based slope ^ is ultimately the product of two parameters: the elasticity of

inflation with respect to real marginal cost and the elasticity of marginal cost with

respect to the output gap. The ability to separately identify the two coefficients is

important for gaining a comprehensive understanding of inflation dynamics.

In this paper, we propose a novel identification strategy to estimate the

slope of the primitive form of the NKPC using microdata. We leverage a

unique high-frequency dataset that provides information on production costs,

1
Also relevant is Beraja et al. (2019), which uses regional data to identify wage Phillips curves.

2
Indeed, it is for this reason that New Keynesian DSGE models with wage rigidity include the

marginal cost-based Phillips curve in the system of equations as opposed to the conventional one

(see Galí 2015 chapter 6 and the references therein).

3
These considerations also extend to formulations of the conventional NKPC that utilize the

unemployment gap as a measure of economic activity instead of the output gap. They also apply

to using an aggregate measure of real marginal cost such as the labor share.
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prices, and quantities of production at the firm-product level to estimate dynamic

pass-through regressions that account for both nominal and real rigidities in

price setting within a general class of models of imperfect competition. The

identification strategy and the granularity of the data enable us to tackle the issues

that typically hinder identification with aggregate data.

Our estimates indicate that the slope of the marginal cost-based Phillips

curve is steep, suggesting a substantial pass-through of marginal cost into prices

and inflation. At the aggregate level, our estimates imply that, in a parsimonious

framework, fluctuations in marginal cost alone can account for almost seventy

percent of inflation dynamics without appealing to unobservable cost-push shocks

or including lags of inflation as is often done.

These findings stand in stark contrast to the low estimates found in the

literature employing the conventional output gap-based formulation of the NKPC

(Rotemberg and Woodford 1997, Hazell et al. 2022). Using our firm-level data,

we reconcile this difference by showing that the implied elasticity of marginal

cost with respect to the output gap is low (at least for pre-pandemic data). In

other words, the slope of the conventional NKPC does not stem from a limited

transmission of fluctuations in marginal cost to inflation, but rather from the weak

connection between movements in the output gap and marginal cost.

The paper proceeds as follows. In Section 2 we develop a theoretical

framework that serves as the foundation of our estimation strategy. We start from

first principles to derive a Phillips curve featuring both nominal price rigidities

and a general form of strategic complementarities in price setting. Notably, our

framework encompasses some of the leading models of imperfect competition,

such as monopolistic competition with variable elasticity of demand (Kimball

1995), static oligopoly (Atkeson and Burstein 2008), and dynamic oligopoly (Wang

and Werning 2022).

Section 3 provides an overview of our data. We collect administrative data

on product-level output prices, quantities, and production costs for the Belgian

manufacturing sector. Our data is similar to the series used by Amiti et al.

(2019). The notable difference is that ours is recorded at a quarterly as opposed to
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annual frequency, which allows us to study the role of nominal rigidities in price

setting. The data records market interactions between both domestic and foreign

competitors over a two-decade period (1999—2019). We observe domestic firms’

own prices (unit values), their competitors’ prices, as well as different components

of their variable costs, which directly map to the theoretical objects.

In Section 4, we outline our identification strategy. The conventional

approach in the literature involves aggregating individual firm pricing decisions

into a NKPC and then estimating its slope with aggregate data. Instead, we use

our microdata to estimate dynamic pass-through regressions that identify both the

degree of nominal and real rigidities from short-run co-movements in firm-level

marginal costs and prices. By doing so, we relate to an earlier literature that

estimates micro-level dynamic pass-through regressions of marginal cost into

prices (Goldberg and Verboven 2001, Nakamura and Zerom 2010). Notably, in an

environment with perfectly flexible prices, our econometric framework nests as a

special case the long-run pass-through regressions estimated in Amiti et al. (2019)

using annual data.

The use of firm-level data greatly strengthens identification. First, we

observe different components of firms’ variable costs, which we use to construct

powerful instruments to tackle endogeneity and measurement issues. Second,

the use of fixed effects allows us to address unobserved heterogeneity as well as

potential concerns related to trends in output growth, trend inflation, and shifts

in inflation expectations.

In Sections 5 and 6, we present the estimation results and assess their

aggregate implications. We obtain sensible and robust estimates of the structural

parameters governing firms pricing behavior, indicating a substantial degree of

nominal rigidities (three to four quarters of stickiness) and underscoring a central

role for strategic complementarities. These estimates imply an economically

meaningful slope of the marginal cost-based Phillips curve, tightly estimated in

the range of 0.05 to 0.07, even when accounting for empirically plausible degrees

of macroeconomic complementarities. These estimates are an order of magnitude

larger than the estimates of output gap-based or unemployment gap-based NKPC
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slopes available in the literature. Finally, we show that a parsimonious marginal

cost-based PC tracks aggregate inflation dynamics well.

In Section 7, we reconcile our estimates with those of the conventional

NKPC found in the literature. We first formalize the mapping between the

marginal cost-based and output-based curves, which is mediated by the elasticity

of marginal cost to output. Subsequently, we develop a framework to identify this

elasticity and the slope of the output-based NKPC using firm-level data.

In Section 8, we show how to use the marginal cost-based PC to examine

the impact of supply shocks on inflation. To illustrate this point, we study the

transmission of identified oil shocks. In Section 9, we show that our empirical

analysis is robust to extending the baseline Calvo setting to allow for menu costs

in pricing. Section 10 concludes.

2 Theoretical framework

This section presents the theoretical framework that underlies our empirical

analysis. We formulate the minimum structure required to produce firm pricing

equations that allow us to identify the slope of the aggregate Phillips curve. The

framework features heterogeneous firms competing under imperfect competition

subject to nominal rigidity. Firms are granular. They internalize their impact

on industry aggregates and are influenced by the pricing decisions of their

competitors. Thismodel generates amicro-foundedNewKeynesian Phillips curve,

the slope of which is a function of the structural parameters that govern firms’

pricing behavior.

2.1 Preferences and pricing behavior

The economy is populated by heterogeneous producers (or firms), denoted by

𝑓 , each operating in an industry 𝑖 ∈ 𝐼 = [0, 1]. We denote by F𝑖 the set of

producers competing in industry 𝑖 . While each firm is of measure zero relative to

the economy as a whole and hence takes aggregate expenditure as given, it might

5



be large relative to its industry, and hence internalizes the effect of its pricing

decisions on the consumption and price index of the industry.

Let 𝑃𝑓 𝑡 be the price charged by each firm for a unit of its output, 𝑃𝑖𝑡 the

industry price index, 𝜑 𝑓 𝑡 is a firm-specific relative demand shifter, and 𝑌𝑖𝑡 the real

industry output. For any industry 𝑖 , we consider an arbitrary invertible demand

system that generates a residual demand function of the following form:

D𝑓 𝑡 := 𝑑 (𝑃𝑓 𝑡 , 𝑃𝑖𝑡 , 𝜑 𝑓 𝑡 )𝑌𝑖𝑡 ∀𝑓 ∈ F𝑖 . (2)

We assume firms face nominal rigidities as in Calvo (1983).
4
Each period

firms face a probability (1 − \ ) of being able to change their price, independent

across time and across firms, with \ ∈ [0, 1]. Thus the price 𝑃𝑓 𝑡 paid by consumers

in any given period is either the (optimal) reset price set by a firm that is able to

adjust, which we denote by 𝑃𝑜
𝑓 𝑡
, or the price charged in the previous period, 𝑃𝑓 𝑡−1.

The firms adjust their prices during the period in order tomaximize expected

profits. Their pricing decisions consider both the pricing choices made by

competitors and the impact of their own price adjustments on their residual

demand and the industry-wide price index. Additionally, nominal rigidities

generate forward-looking pricing behavior, as firms take into account that it

might not be possible to adjust prices every period. As a result, the optimal

reset price set by firms that are able to adjust is a weighted average of current

and (expected) future nominal marginal costs and markups. Let Λ𝑡,𝜏 denote the

stochastic discount factor between time 𝑡 and 𝑡 +𝜏 ,𝑇𝐶 𝑓 𝑡 := 𝑇𝐶 (D𝑓 𝑡 ) the real total
costs, and𝑀𝐶𝑛

𝑓 𝑡
the nominal marginal cost of firm 𝑓 . Then the optimal reset price

𝑃𝑜
𝑓 𝑡
solves the following profit maximization problem:

max

𝑃𝑜
𝑓 𝑡
,{𝑌𝑓 𝑡+𝜏 }𝜏≥0

E𝑡

{ ∞∑︁
𝜏=0

\𝜏

[
Λ𝑡,𝜏

(
𝑃𝑜
𝑓 𝑡

𝑃𝑡+𝜏
D𝑓 𝑡+𝜏 −𝑇𝐶 ( D 𝑓 𝑡+𝜏 )

)]}
,

subject to the sequence of expected demand functions {D𝑓 𝑡+𝜏 }𝜏≥0 in equation (2).

4
In Section 9 we show that our identification approach and the estimated NPKC remain valid

if the data-generating process features Ss-style price adjustments as in conventional menu cost

models.
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The FOC of the problem is:

E𝑡

{ ∞∑︁
𝜏=0

\𝜏Λ𝑡,𝜏D𝑓 𝑡+𝜏

[
𝑃𝑜
𝑓 𝑡

𝑃𝑡+𝜏
− (1 + `𝑓 𝑡+𝜏 )

𝑀𝐶𝑛
𝑓 𝑡+𝜏

𝑃𝑡+𝜏

]}
= 0, (3)

where `𝑓 𝑡 denotes the desired log markup.

According to equation (3), the optimal reset price depends on the expected

path of marginal cost over the period the firm expects its price to be fixed, where

\𝜏 is the probability the firm expects its price to be fixed 𝜏 periods from now.

Moreover, in finding the optimal reset price, the firm factors in how its pricing

decision today affects the expected path of the desired markups. The desired net

markup is then given by the Lerner index:

`𝑓 𝑡+𝜏 := ln

(
𝜖𝑓 𝑡+𝜏

𝜖𝑓 𝑡+𝜏 − 1

)
, (4)

where 𝜖𝑓 𝑡+𝜏 := − 𝜕 lnD 𝑓 𝑡+𝜏
𝜕 ln 𝑃𝑜

𝑓 𝑡

denotes the residual demand elasticity faced by firm 𝑓 .

2.2 Technology

Firms are heterogeneous in their production technologies. We assume that a unit

of output of 𝑌𝑓 𝑡 is produced at a nominal marginal cost of:
5

𝑀𝐶𝑛
𝑓 𝑡
= C𝑖𝑡A𝑓 𝑡𝑌

a 𝑓

𝑓 𝑡
, (5)

where C𝑖𝑡 denotes the nominal unit cost of the composite input factor (e.g., wages

and intermediate goods) that is independent of the scale of production; A𝑓 𝑡

is a firm-specific cost shifter that captures, among other idiosyncratic factors,

heterogeneity in firm’s production efficiency; a 𝑓 is a firm-specific parameter that

pins down the short-term returns to scale of firms production technology, which

are given by (1/(1 + a 𝑓 )).
Whereas in the empirical analysis we allow for non-constant returns to

5
This functional form is rather general and consistent with standard production technologies

used in the literature (see e.g. Hottman et al. 2016). For instance, it nests Cobb-Douglas and CES

as special cases.

7



scale at the firm level, to derive aggregate implications we focus on the aggregate

constant returns to scale case (i.e., on average a 𝑓 = 0). This assumption rules out

macroeconomic complementarities due to the feedback of firms’ pricing behavior

into their respective marginal cost (see e.g. Galí 2015).
6

In Appendix A.2, we

present a general framework that allows for arbitrary aggregate returns to scale.

In Section 5.1, we show that our estimates of the Phillips curve are robust as

the empirical evidence is broadly consistent with the constant returns to scale

assumption at both the sectoral and aggregate levels.

2.3 The optimal reset price

We log-linearize the FOC in equation (3) around the symmetric steady state with

zero inflation.
7
Denoting with lower-case letters the variables in logs, we obtain

that the reset price satisfies:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽\ )E𝑡

{ ∞∑︁
𝜏=0

(𝛽\ )𝜏
(
`𝑓 𝑡+𝜏 +𝑚𝑐𝑛

𝑓 𝑡+𝜏

)}
. (6)

As we show in Appendix A.1, the log-linearized desired markup is a function

that depends inversely on the gap between the firms’ own reset price and the price

of its competitors, which we denote by 𝑝
−𝑓
𝑖𝑡
. Formally:

`𝑓 𝑡 − ` = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝

−𝑓
𝑖𝑡

)
+ 𝑢`

𝑓 𝑡
, (7)

where Γ > 0 denotes the markup elasticity with respect to prices and𝑢
`

𝑓 𝑡
is a shock

to the desired markup. 𝑢
`

𝑓 𝑡
is a firm demand shock that generally depends on the

demand shifter 𝜑 𝑓 𝑡 (equation 4 of the Appendix). Under weak assumptions, this

relationship holds for standard imperfectly competitive frameworks, including

monopolistic competition with variable elasticity of demand (Kimball 1995), static

oligopoly (Atkeson and Burstein 2008) and dynamic oligopoly (Wang andWerning

2022). These frameworks share the property that, in equilibrium, a firm’s elasticity

6
Macroeconomic complementarities can arise, for example, from roundabout production as in

Basu (1995) or local input markets as in Woodford (2011).

7
The choice of steady-state inflation is largely immaterial for our purposes but permits a lighter

notation. We relax it in the empirical analysis, where we allow for sector/industry-specific trends.

8



of demand declines as its market share increases. Thus the presence of strategic

complementarities in price-setting behavior implies that a relative price increase

lowers a firm’s desired markup, dampening the response of prices to movements

in marginal cost.

Substituting the expression for `𝑓 𝑡+𝜏 in the log-linearized FOC we obtain the

following forward-looking pricing equation:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽\ )E𝑡

{ ∞∑︁
𝜏=0

(𝛽\ )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + `) + Ω𝑝
−𝑓
𝑖𝑡+𝜏

)}
+ 𝑢 𝑓 𝑡 , (8)

where 𝑢 𝑓 𝑡 := (1 − 𝛽\ ) (1 − Ω)E𝑡
{∑∞

𝜏=0
(𝛽\ )𝜏𝑢`

𝑓 𝑡+𝜏

}
is a firm demand shock. The

parameter Ω := Γ
1+Γ captures the strength of strategic complementarities, which

impacts the firm’s pricing policy (8) by muting the price response to changes in

marginal costs. If the elasticity of demand is constant—as it is in the textbook

New Keynesian model with monopolistically competitive firms—so is the desired

markup `𝑓 𝑡 . In this case, Ω = 0 and the optimal pricing equation simplifies to the

familiar formulation where the reset price exclusively depends on the current and

future stream of marginal costs. Competitors’ prices are then irrelevant.

2.4 The New Keynesian Phillips Curve

As we show in Appendix A.2, the log-linear aggregate price index is given by:

𝑝𝑡 = (1 − \ )𝑝𝑜𝑡 + \𝑝𝑡−1, (9)

with 𝑝𝑡 and 𝑝
𝑜
𝑡 denoting the aggregate price indexes implied by equation (2), which

average across firms and industries. Let 𝑚𝑐𝑛𝑡 denote the aggregate log-nominal

marginal cost. Define the aggregate real marginal cost and aggregate inflation as

𝑚𝑐𝑡 = 𝑚𝑐𝑛𝑡 − 𝑝𝑡 and 𝜋𝑡 = 𝑝𝑡 − 𝑝𝑡−1, respectively. Averaging the pricing equation

in (8) across firms and industries and writing it in recursive form, we obtain an

equation for the aggregate reset price:

𝑝𝑜𝑡 = (1 − 𝛽\ )
(
(1 − Ω) (𝑚𝑐𝑛𝑡 + `) + Ω𝑝𝑡

)
+ 𝛽\E𝑡𝑝

𝑜
𝑡+1

+ \

1 − \
𝑢𝑡 , (10)
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where𝑢𝑡 is an aggregate cost-push shock, defined in the Appendix A.2. Combining

equations (9) and (10) gives the primitive formulation of the NKPC curve:

𝜋𝑡 = _ 𝑚𝑐𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , (11)

which asserts that inflation depends on real marginal cost (in deviation from its

steady state) and on expected future inflation. _ is the slope of the NKPC curve,

defined by:

_ :=
(1 − \ ) (1 − 𝛽\ )

\
(1 − Ω). (12)

Two observations are worth noting. First, the primitive form of the Phillips

curve in equation (11) features the log deviation of real marginal cost from its

steady state as the relevant real activity variable. In contrast, the conventional

formulation of the Phillips curve, displayed in equation (1), uses the output

gap or unemployment to proxy for marginal cost. As we will discuss, the

mapping between marginal cost and output gap is theoretically valid only under

specific circumstances. Moreover, even when a proportionality between the two

variables can be established, the elasticities of marginal cost to output gap and

unemployment need not be equal to one. We return to these important points in

Section 7.

Secondly, the slope of the NKPC, _, is a function of the primitives governing

firms’ pricing behavior. As in standard New Keynesian models (e.g., Galí and

Gertler 1999), high nominal rigidities and low discounting flatten the sensitivity of

inflation to changes in real economic activity. Additionally, equation (12) shows

how strategic complementarities also contribute to reducing the slope. Therefore,

given a calibration of the discount factor 𝛽 , estimates of the structural parameters

\ and Ω pin down the slope of the Phillips curve.

Toward this end, we take the structural pricing equation (8) to the data. This

exercise requires measures of prices and marginal costs, which we discuss in the

next section. Notably, it is the use of firm-level data that permits the identification

of the primitive parameters.
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3 Data and measurement

We begin by introducing our dataset and highlighting its features that are relevant

for measurement purposes. We then illustrate the procedure for constructing price

and marginal cost measures using both product-level and firm-level data.

3.1 Data

We assemble a unique micro-level dataset that covers the manufacturing sector

in Belgium between 1999 and 2019. A rare feature of our dataset is its ability

to track, on a quarterly basis, product-level prices and quantities sold in the

domestic market by both domestic and foreign producers, as well as information

on production costs for domestic producers. Our dataset is compiled from four

administrative sources: PRODCOM, international trade data, VAT declarations,

and Social Security declarations.

We obtain information on domestic firms from PRODCOM. This dataset

allows us to observe firms’ quarterly sales and physical quantities sold for each

narrowly defined 8-digit manufacturing product. We use this highly disaggregated

information to calculate domestic unit values (sales over quantities) at the

firm-product level (PC 8 digit).
8
We obtain similar data on foreign competitors

from the administrative records of Belgian Customs. Specifically, for each

manufacturing product sold by a foreign producer to a Belgian buyer, we observe

quarterly sales and quantity sold for different products (CN 8-digit), from which

we compute unit values of foreign competitors in local markets.

We leverage detailed administrative data to measure firms’ variable

production costs at a quarterly frequency. Specifically, we obtain information

on firms’ purchases of intermediates (materials and services) from their VAT

8
PRODCOM surveys all Belgian firms involved in manufacturing production with more than

10 employees, covering over 90% of production in each NACE 4-digit industry. The survey

does not require firms to distinguish between production and sales to domestic and international

customers. Therefore, we recover domestic values and quantities sold by combining information

from PRODCOM with international trade data on firms’ product-level exports (quantities and

sales).
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declarations. Additionally, we draw upon firms’ Social Security declarations to

obtain a measure of their labor costs (the wage bill).

After applying standard data cleaning filters, our final sample includes 4, 598

firms observed over 84 quarters (1999:Q1–2019:Q4), totaling 132, 915 observations.

Appendix B provides detailed information on the data sources and data cleaning

procedures. Table 1 presents summary statistics of our dataset. Several features of

the data are worth noting.

First, our dataset covers the lion’s share of domestic manufacturing

production in Belgium, spanning the entire size distribution. The average firm

in our dataset employs 74 employees (measured in full-time equivalents) and has

a domestic turnover (sales) of €6 million. The sales of the smallest firms in the

sample are worth less than one-tenth of a thousandth of those generated by the

largest producers.

Second, throughout the paper we adopt a narrow industry definition

based on 4-digit NACE rev. 2 codes, the standard sector classification system

in the European Union. Based on this classification, we sort firms into 169

manufacturing industries, distributed across 9 manufacturing sectors.
9

This

classification optimally balances a coherent definition of the industry (which

is mostly precise if narrow) with the ability to identify an appropriate set of

competitors (both domestic and foreign) competing to gain market share in

Belgium. Table 1 shows that the lion’s share of the firms in our sample specializes

in only one manufacturing industry. Even for those firms that operate in multiple

industries, the contribution of the main industry to total firm revenues is, on

average, 98% (median 100%). For the few multi-industry firms, in line with the

theoretical framework, we treat each industry as a separate firm.

Third, the typical sector is characterized by a large number of firms with

small market shares—the average within-industry share is approximately 1.5%

9
The first four digits of the PRODCOM product classification coincide with the first four

digits of the NACE rev. 2 classification and also to the first 4 digits of the CN product code

classification used in the customs data. Following the official Eurostat classification system, we

define manufacturing sectors by grouping 2-digit NACE rev. 2 codes, appropriately harmonized to

account for changes in product classifications over time. See Appendix B for sectors’ definitions.
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on average, with a median of 0.5%—and a few relatively large producers. To the

extent that these large firms internalize the effect of their pricing and production

decisions on industry aggregates and strategically react to the pricing decisions

of their competitors, the monopolistic competition benchmark would be a poor

approximation. The theoretical framework introduced in the previous section

explicitly accounts for this.

Fourth, although the largest firms have nontrivial market shares in their

industries, they are small compared to the volume of economic activity of their

macro sector (e.g., textile manufacturing or electrical equipment manufacturing)

and, even more so, compared to the volume of economic activity in the whole

manufacturing sector in Belgium. It is therefore reasonable to assume that even

the largest producers do not internalize the effect of their pricing and production

decisions on the aggregate economy.

Finally, our data allow us to observe a long time series of both prices and

marginal costs. On average, we observe firms for approximately 10 consecutive

years (42 quarters). This feature of the data is particularly important for

identification purposes. As we discuss below, a long time series enables us to

include unit fixed effects in our empirical models to control for time-invariant

confounding factors without suffering from the classical Nickell bias that

frequently complicates the estimation of dynamic panel models.

3.2 Measurement

We now describe the measures of prices and marginal cost that map to the

theoretical counterparts in Section 2. Appendix B provides a detailed description

of the procedure used to construct all our variables.

Output prices. The key variable of interest is the domestic price of goods

charged by firms in the local market (Belgium). Consistent with the notation used

in the theoretical framework, we use the subscript 𝑖 to denote an industry, 𝑓 to

13



Table 1: Summary Statistics

Mean 5
𝑠𝑡
pctle 25

𝑡ℎ
pctle Median 75

𝑡ℎ
pctle 95

𝑡ℎ
pctle

Number of industries 1.10 1.00 1.00 1.00 1.00 2.00

within firm

Within firm revenue 98.22 86.57 100.00 100.00 100.00 100.00

share of main industry

Firm’s market share 1.72 0.06 0.22 0.53 1.36 6.57

within industry

Firm’s market share 0.21 0.01 0.02 0.05 0.13 0.70

within sector

Firm’s market share 0.03 0.00 0.00 0.01 0.01 0.08

within manufacturing

Number of consecutive 42.19 11.00 24.00 38.00 59.00 82.00

quarters in sample

Notes. The summary statistics reported in this table refer to the sample of domestic producers

in PRODCOM. The sample includes 4, 598 firms observed over 84 quarters (1999:Q1–2019:Q4),

totaling 132, 915 observations.

denote a firm-industry pair, and 𝑡 to denote time (quarters).
10

We denote by 𝑠 𝑓 𝑡

the revenue share of the firm in the industry.

We compute the change in firm prices 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1, using the most

disaggregated level allowed by the data. For domestic producers, the finest

level of aggregation is a firm×PC 8-digit product code level. For foreign

competitors, it is the importing-firm×source country×PC 8-digit product code

level.
11

Approximately half of the domestic firms in our sample are multi-product

firms, meaning they produce multiple 8-digit products within the same industry.

For these entities, we compute the price change by aggregating changes in

product-level prices using a Törnqvist index:
12

10
Whenever a firm operates in multiple 4-digit industries, we treat each firm-industry pair as a

separate unit in our sample. As we discussed, most firms operate in only one industry, and themain

industry accounts for the lion’s share of sales of multi-industry firms. Therefore, all our results are

essentially unchanged if we restrict the sample to the main industry for each firm.

11
In the raw customs data, products are measured using the more disaggregated CN 8-digit

product classification. We map the CN product codes to PC 8-digit product codes using the official

bridge tables available on the Eurostat web page. See Appendix B.1 for additional details.

12
The Törnqvist index coincides with the Cobb-Douglas index whenever sales shares are

14



𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏
𝑝∈P𝑓 𝑡

(𝑃𝑝𝑡/𝑃𝑝𝑡−1)𝑠𝑝𝑡 .

In the formula above, P𝑓 𝑡 represents the set of 8-digit products manufactured by

firm 𝑓 , 𝑃𝑝𝑡 is the unit value of product 𝑝 in P𝑓 𝑡 , and 𝑠𝑝𝑡 is a Törnqvist weight

computed as the average of the sale shares between 𝑡 and 𝑡 − 1: 𝑠𝑝𝑡 :=
𝑠𝑝𝑡+𝑠𝑝𝑡−1

2
. We

then construct the time series of firms’ prices (in levels) by concatenating quarterly

changes.
13

Using a similar approach, we construct the price index of competitors for

each domestic firm by concatenating quarterly changes according to the following

formula:

𝑃
−𝑓
𝑖𝑡

/𝑃−𝑓
𝑖𝑡−1

=
∏

𝑘∈F𝑖/𝑓
(𝑃𝑘𝑡/𝑃𝑘𝑡−1)𝑠

−𝑓
𝑘𝑡 . (13)

Here, 𝑠
−𝑓
𝑘𝑡

:= 1

2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
represents a Törnqvist weight, which is constructed

by averaging the residual revenue share of competitors in the industry at time 𝑡

(net of firm 𝑓 revenues) with that at time 𝑡 − 1.
14

It is important to note that the

set of domestic competitors for each Belgian producer, denoted as F𝑖 , includes not
only other Belgian manufacturers operating in the same industry but also foreign

manufacturers that sell goods to Belgian customers.

Marginal costs. The general cost structure outlined in equation (5) implies that

firms’ nominal marginal costs are proportional to its average variable costs, as

constant over time. Allowing for time-varying shares is empirically relevant given that market

shares of individual firms vary over time due, e.g., to changes in market conditions and entry or

exit of firms

13
Let 𝑡0

𝑓
denote the first quarter when 𝑓 appears in our data. Starting from a base period 𝑃𝑓 0,

which we can normalize to one, prices are concatenated using the formula:

𝑃𝑓 𝑡 = 𝑃𝑓 0

𝑡∏
𝜏=𝑡0

𝑓
+1

(
𝑃𝑓 𝜏

𝑃𝑓 𝜏−1

)
.

The normalization of the level of the firm’s price index in the base year, 𝑃𝑓 0, is one rationale for

the inclusion of firm fixed effects in our empirical specifications.

14
As with the firm’s price index, the level of the price index of competitors is constructed by

normalizing the first period to one and concatenating quarterly changes. Also, in this case, the

normalization is immaterial for estimation purposes as our empirical model always includes firm

fixed effects.

15



follows:

𝑀𝐶𝑛
𝑓 𝑡
= (1 + a 𝑓 )

𝑇𝑉𝐶 𝑓 𝑡

𝑌𝑓 𝑡
. (14)

Taking logs of the formula, we obtain a proxy of firms’ log nominal marginal costs

that has a measurable counterpart in our data.

We measure total variable costs (𝑇𝑉𝐶 𝑓 𝑡 ) as the sum of intermediate costs

(materials and services purchased) and labor costs (wage bill). We obtain a

firm-specific quantity index for domestic sales (𝑌𝑓 𝑡 ) by scaling a firm’s domestic

revenues by its domestic price index, such that 𝑌𝑓 𝑡 = (𝑃𝑌 )𝑓 𝑡/𝑃𝑓 𝑡 . For

single-industry firms, 𝑃𝑓 𝑡 coincides with the firm-industry price index 𝑃𝑓 𝑡 , which

was discussed earlier. For multi-industry firms, we aggregate industry prices 𝑃𝑓 𝑡

by using as weights the firm-specific revenue shares of each industry.
15

Finally,

returns to scale are not directly observable in the data. By applying a logarithmic

transformation to equation (14), the inverse of the short-run returns to scale

parameter, ln(1+a 𝑓 ), enters as an additive term in our specifications. Aswe explain

below, in the empirical analysis we control for this term using fixed effects.

4 Identification strategy

In this section, we present the identification strategy that enables us to take

our theoretical framework to the data. We show how to connect theoretical

reset prices to observed prices to obtain forward-looking pricing equations that

have measurable counterparts. Within this framework, we estimate dynamic

pass-through regressions, which identify the structural parameters that pin down

the slope of the primitive NKPC.

15
Specifically, we apply the Törnqvist weight of each (4-digit) industry bundle 𝑖 produced by firm

𝑓 in quarter 𝑡 , which is defined as (𝑠𝑓 𝑖𝑡 + 𝑠𝑓 𝑖𝑡−1)/2, where 𝑠𝑓 𝑖𝑡 is the share of revenues of the firm

coming from sales in industry 𝑖 in total sales across industries. The choice of 𝑃𝑓 𝑡 has essentially no

impact on our estimation results because, as we have shown, the majority of the firms in our data

operate in only one industry, and the sales of those firms that produce goods in multiple industries

are typically concentrated mainly in their primary industry. Results are robust to defining 𝑃𝑓 𝑡 as

the price of the main industry or using other aggregation methods (such as an arithmetic average

or a CES aggregator).
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4.1 Mapping the model to the data

Consider a firm entering period 𝑡 before knowing whether or not it will be able to

change its price. Under the Calvo framework, the conditional expectation of the

observed price given the information set at time 𝑡 , I𝑡 , is given by:

E{𝑝 𝑓 𝑡 |I𝑡 } = (1 − \ )𝑝𝑜
𝑓 𝑡
+ \𝑝 𝑓 𝑡−1. (15)

We define the sampling error 𝑣 𝑓 𝑡 := 𝑝 𝑓 𝑡−E{𝑝 𝑓 𝑡 |𝑝𝑜𝑓 𝑡 , 𝑝 𝑓 𝑡−1} and map the conditional

expectation to realized values as follows:

𝑝 𝑓 𝑡 = (1 − \ )𝑝𝑜
𝑓 𝑡
+ \𝑝 𝑓 𝑡−1 + 𝑣 𝑓 𝑡 .

Leveraging the rational expectations assumption, we replace for 𝑝𝑜
𝑓 𝑡

using the

equation of the reset price (equation 8) to obtain to following population regression

(up to a constant):

𝑝 𝑓 𝑡 = (1 − \ )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡
)∞ + Ω(𝑝−𝑓

𝑖𝑡
)∞

)
+ \𝑝 𝑓 𝑡−1 + Y 𝑓 𝑡 , (16)

where (𝑥𝑡 )𝑇 := (1 − 𝛽\ )∑𝑇−1

𝜏=0
(𝛽\ )𝜏𝑥𝑡+𝜏 + (𝛽\ )𝑇𝑥𝑡+𝑇 denote the discounted present

values of 𝑥𝑡 = {𝑚𝑐𝑛
𝑓 𝑡
, 𝑝

−𝑓
𝑖𝑡

} up to time 𝑇 . The residual Y 𝑓 𝑡 is given by

Y 𝑓 𝑡 := 𝑣 𝑓 𝑡 + (1 − \ ) (1 − 𝛽\ )𝑒 𝑓 𝑡 + (1 − \ )𝑢 𝑓 𝑡 ,

where 𝑒 𝑓 𝑡 denotes an expectational error such that E𝑡 (𝑒 𝑓 𝑡 ) = 0, and𝑢 𝑓 𝑡 is the firm’s

demand shock that enters the equation for the reset price.

4.2 Identification

Baseline model. To construct the sample analog of the population regression

(16), we calibrate the discount factor 𝛽 = 0.99, a standard value at the quarterly

frequency, and truncate present values after𝑇 = 8 quarters, which is a sufficiently

distant period to ensure that the discount factor (𝛽\ )𝜏 is approximately zero for 𝜏 >

𝑇 . We then augment the regression model to include sector-by-time fixed effects

(𝛼𝑠×𝑡 ) and firm fixed effects (𝛼 𝑓 ), leading to the following dynamic pass-through

regression:
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𝑝 𝑓 𝑡 = (1 − \ )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡
)8 + Ω(𝑝−𝑓

𝑖𝑡
)8

)
+ \𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + Y 𝑓 𝑡 . (Model A)

The inclusion of fixed effects addresses several identification issues that generally

complicate the identification of the NKPCwith aggregate data. The sector-by-time

fixed effects extend the theoretical framework to allow for sector-specific trends or

time-varying steady states of the variables in the data. In addition, they address the

concerns related to shifts in long-term inflation expectations discussed in Hazell

et al. (2022). The firm fixed effects account for heterogeneity in the returns to scale

in production (equation 14) and the normalization of the price level (footnote 13).

Model A nests the long-runmodel estimated in Amiti et al. (2019) as a special

case when prices are flexible (i.e., \ → 0). As in long-run pass-through regressions,

the ratio of the coefficients on marginal cost and competitors’ prices identifies the

degree of real rigidities Ω. Unlike long-run models, in short-run pass-through

regressions the sum of the two coefficients (1 − \ ) ≤ 1 is pinned down by the

degree of nominal rigidities. Moreover, the firm’s lagged price enters the empirical

specification as a control for the short-run dynamics of prices.

Instruments. We estimate Model A via Generalized Method of Moments

(GMM).
16

To address potential endogeneity and measurement issues, we impose

orthogonality conditions between the error term of the pricing equation and a set

of supply-side instruments that closely relate to the ones used in Amiti et al. (2019).

Competitors’ price index—Competitors’ prices are jointly determined with a firm’s

own price and thus correlate with the firm’s demand shocks entering the error

16
The GMM estimation procedure follows the two-step approach. To ensure that our estimates

are representative from amacroeconomic standpoint, we weigh observations using their Törnqvist

weight, 𝑠𝑓 𝑡 , thereby ensuring that each firm is assigned the same weight as in the construction

of aggregate price indexes. The moment conditions take the form E{𝑍 𝑓 𝑡 · 𝜖𝑓 𝑡 } = 0, where the

vector 𝑍 𝑓 𝑡 includes the set of instruments, the lagged price control, and the unit vector. We cluster

standard errors at the sector level to account for the potential correlation structure of error terms

across firms in similar businesses. This choice is conservative but appropriate since it accounts for

the possibility of correlated shocks within the sector.
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term. To tackle this issue, we construct two instruments for 𝑝
−𝑓
𝑖𝑡

that leverage

variation in international trade prices.

Denote by F★
𝑘𝑖
the set of international competitors of firm 𝑓 ∈ F𝑖 that operate

in country 𝑘 and industry 𝑖 . The first instrument, denoted by 𝑝★𝐸𝑈𝑖𝑡 , is a shifter of

the price of Euro area international competitors. The rationale is that the average

price charged by international competitors correlates with their marginal cost of

production but not with demand shocks in Belgium. We use the Comext dataset

from Eurostat to compute the (sales-weighted) average log price change that each

Euro-area country 𝑘 charges to the rest of the world for exported goods in industry

𝑖 . We exclude Belgium from that average and denote it by Δ𝑝−𝐵
𝑘𝑖𝑡
. Then, we compute

an index by averaging across all competitors 𝑗 and all EU countries:

Δ𝑝★𝐸𝑈𝑖𝑡 =
∑︁
𝑘∈𝐸𝑈

∑︁
𝑗∈F★

𝑘𝑖

𝑤 𝑗𝑡 · Δ𝑝−𝐵𝑘𝑖𝑡 ,

where the weight𝑤 𝑗𝑡 is obtained by normalizing the Törnqvist weight in formula

(13) by the market share of EU competitors in industry 𝑖:

𝑤 𝑗𝑡 := 𝑠
−𝑓
𝑗𝑡

·
∑

𝑘∈𝐸𝑈
∑

𝑗∈F★
𝑘𝑖

𝑠
−𝑓
𝑗𝑡∑

𝑘

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡

.

Finally, we concatenate Δ𝑝★𝐸𝑈𝑖𝑡 to obtain the instrument 𝑝★𝐸𝑈𝑖𝑡 in levels as before.

The second instrument, denoted by 𝑝★𝐹𝑖𝑡 , is a shifter of the price of non-EU

competitors that leverages variation in bilateral exchange rates (Δ𝑒𝑘𝑡 ) between

country 𝑘 and Belgium:

Δ𝑝★𝐹𝑖𝑡 =
∑︁
𝑘∉𝐸𝑈

∑︁
𝑗∈F★

𝑘𝑖

𝑤 𝑗𝑡 · Δ𝑒𝑘𝑡 ,

where the weight𝑤 𝑗𝑡 is now scaled by the market share of non-EU competitors:

𝑤 𝑗𝑡 := 𝑠
−𝑓
𝑗𝑡

·
∑

𝑘∉𝐸𝑈

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡∑

𝑘

∑
𝑗∈F★

𝑘𝑖
𝑠
−𝑓
𝑗𝑡

.

Again, we concatenate Δ𝑝★𝐹𝑖𝑡 to obtain the instrument 𝑝★𝐹𝑖𝑡 in levels. Here the

exclusion restriction requires that Euro exchange rates are orthogonal to domestic

demand shocks.
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Marginal cost—The primary concern with our proxy of marginal cost is

measurement error, which can result in attenuation bias. Further, to the extent

that firms operate with decreasing returns to scale in production, there could be

concerns about the correlation of marginal cost with the firm-level demand shock

in the error term. We address these issues using an instrument that leverages

supply-side variation in marginal costs due to shifts in the price of intermediate

inputs sourced from foreign suppliers, which we denote by𝑚𝑐★
𝑓 𝑡
:

𝑚𝑐★
𝑓 𝑡
=

∑︁
𝑘∈S★

𝑓

𝜔𝑖0 · 𝑝★𝑘𝑡 ,

where S★
𝑓
denotes the set of international suppliers of firm 𝑓 ; 𝜔𝑖0 the share of

imported inputs from supplier 𝑘 in total variable costs of firm 𝑓 , measured in the

first period in which the firm appears in our dataset; and 𝑝★
𝑘𝑡

the log of supplier

𝑘’s price.

Additionally, to improve the efficiency of our inference, we augment the set

of instruments with a “long” lag of marginal cost (8 quarters),𝑚𝑐𝑛
𝑓 𝑡−8

. As shown

by Montiel Olea and Plagborg-Møller (2021), in dynamic settings with persistent

shocks, it is important to include lags in the set of instruments to produce robust

estimates that have correct asymptotic coverage uniformly over the persistence

in the data-generating process. Given our estimates of nearly constant returns

to scale (see section 5.1), lagged marginal cost satisfies the exclusion restriction

for a reasonable die-out rate of demand shocks. We confirm the validity of our

instruments with formal tests in the next section.

5 Estimation results

Structural estimates. Column (A) in Table 2 presents the estimates of our

baseline model. We begin by assessing the power of our instruments. In Panel

a, we regress the present values of marginal cost and competitors’ prices on the

set of instruments, essentially producing what would be the first-stage regressions

of a linear two-stage least squares model. As we can see, all coefficients have
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the expected signs and are statistically significant. The high values of the

Cragg-Donald and Kleibergen-Paap F-statistics indicate that we can reject the

hypothesis of weak identification at standard confidence levels. Moreover, the

low test statistics for the Hansen-Sargan over-identification test indicate that

our instruments also satisfy the exclusion restrictions required by the moment

conditions. These findings highlight the benefits of estimating the slope using

microdata, which overcomes the endogeneity and lack of instruments’ power

commonly encountered with aggregate time-series data (Mavroeidis et al. 2014).

Panel b reports the structural estimates for the degrees of nominal and

real rigidities obtained estimating Model A via GMM. Our estimates indicate a

substantial degree of price stickiness. We find a precisely estimated value of

\ = 0.702. Through the lens of a Calvo model, this implies that, on average,

prices remain fixed for approximately three to four quarters. These estimates

are remarkably consistent with the frequency of price adjustments measured by

Nakamura and Steinsson (2008) from US PPI data and with the one obtained from

Belgian PPI data. In section 9, we return to the interpretation of \ and consider

its mapping to the observed frequency of price adjustment in a framework with

menu costs.

Our estimates also reveal an economically meaningful role of strategic

complementarities in the pass-through of shocks. The estimate of Ω is 0.556

and is precisely estimated. This estimate aligns with the one obtained by

Amiti et al. (2019) in a long-run model with flexible prices, indicating that the

pass-through from marginal costs and from competitors’ prices are roughly of the

same magnitude. However, it is important to stress how, in an environment with

sticky prices and forward-looking pricing behavior, the short-run pass-through of

marginal costs depends on both the degree of strategic complementarities and the

degree of nominal rigidities. Specifically, the elasticity of a firm’s own price to a

permanent shock to marginal cost is given by

𝜕𝑝 𝑓 𝑡

𝜕𝑚𝑐𝑛
𝑓 𝑡

= (1 − Ω) (1 − \ ), which is

approximately equal to 0.135 at the estimated parameter values.
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The slope of the primitive NKPC. Using the structural parameters estimates,

we recover the slope of the marginal cost-based NKPC, presented in Panel c. We

find an economically meaningful relation between fluctuations in marginal costs

and aggregate inflation dynamics. The estimated slope is _ = 0.057, precisely

estimated and statistically different from zero.

These estimates stand in stark contrast with the available estimates of the

NKPC slope featuring the output gap or unemployment as a measure of real

economic activity. These estimates typically display a magnitude that is two and a

half to ten times smaller. For instance, Rotemberg andWoodford (1997) and Hazell

et al. (2022) find a ^ of 0.024 and 0.0062, respectively, for US data. In section 7, we

return to this comparison and provide empirical evidence that helps reconcile why

inflation appears to be much more responsive to marginal cost fluctuations than

to changes in output or employment.

Alternative specifications. We now evaluate the robustness of our findings.

We present estimates of the parameters of interest obtained from two alternative

empirical models that rely on different assumptions and exploit different margins

of variation in the data.

The first concern we address is related to a possible mismeasurement of the

competitors’ price index. Our baselinemeasure assumes that the set of competitors

corresponds to all other firms operating in the same four-digit industry. However,

it is possible that some relevant competitorsmight operate outside of the perimeter

of the industry. To address this concern, we include a set of industry-by-time

fixed effects, which agnostically absorb the present value of competitors’ prices.
17

In addition, as with the sector-by-time fixed effects that we used earlier, these

narrower fixed effects also control for trends. In this way, we obtain the following

empirical model:

𝑝 𝑓 𝑡 = (1 − \ ) (1 − Ω) (𝑚𝑐𝑛
𝑓 𝑡
)8 + \𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + Y 𝑓 𝑡 , (Model B)

17
Since most firms are small compared to their industry, over 90% of the variation in each firm’s

competitor price index occurs at the industry-year level.
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Table 2: Estimation Results

Model: (A) (B) (C)

Panel a: First stages

Endog. Var. (𝑚𝑐𝑛
𝑓 𝑡
)8 (𝑝−𝑓

𝑖𝑡
)8 (𝑚𝑐𝑛

𝑓 𝑡
)8 𝑚𝑐𝑛

𝑓 𝑡

𝑚𝑐𝑛
𝑓 𝑡−8

0.131 0.017 0.127 0.286

(0.025) (0.012) (0.018) (0.061)

𝑚𝑐★
𝑓 𝑡

0.068 -0.007 0.045 0.046

(0.025) (0.025) (0.030) (0.029)

𝑝★𝐸𝑈𝑖𝑡 0.141 0.584

(0.052) (0.052)

𝑝★𝐹𝑖𝑡 0.128 0.585

(0.045) (0.054)

𝑝 𝑓 𝑡−1 0.220 0.135 0.252 0.305

(0.049) (0.035) (0.028) (0.014)

Cragg-Donald 𝐹 444 971 2690

Kleibergen-Paap 𝐹 15.5 29.4 15.5

Hansen-Sargan 𝐽 5.919 1.053 5.086

Panel b: Structural estimates
\ 0.702 0.685 0.706

(0.025) (0.011) (0.011)

Ω 0.556 0.605 0.466

(0.074) (0.093) (0.088)

𝜌 0.800

(0.017)

Panel c: Slope of the Phillips curve
_ 0.057 0.059 0.067

(0.018) (0.020) (0.016)

Firm FE y y y

Sect. x time y

Ind. x time y y

Notes. This table presents the empirical estimates of models A, B, and C. For each model,

Panel a reports the estimates of linear regressions of the endogenous variables on the exogenous

instruments and controls. Panel b reports the GMM estimates of the structural parameters. Panel c

reports the slope of the Phillips curve (_) implied by the estimated parameters. The discount factor

is calibrated to 𝛽 = 0.99. All models are estimated using the complete sample (𝑁 = 132, 915). In all

regressions, observations are weighted using Törnqvist weights. Robust standard errors (reported

in parenthesis) are clustered at the sector level.
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where 𝛼𝑖×𝑡 is an industry-by-time fixed effect. Column (B) presents the first-stage

regression estimates, structural parameters estimates, and the implied NKPC slope

(corresponding to Panels a, b, and c, respectively). Both the estimated degree of

price stickiness and the degree of strategic complementarities are notably stable

and precisely estimated. Consequently, the implied slope of the Phillips curve is

nearly identical to the one of our baseline model.

A valuable feature of both Model A and Model B is that they do not impose

stringent constraints on how firms form expectations about the dynamics of

future marginal costs and industry prices. The flip side of this flexibility is that

the estimating equations are highly nonlinear because \ enters the estimating

equation both as a coefficient in front of the present values and lagged prices

as well as in the construction of the discounted present values, which might be

demanding on the data. To address this concern, we assume that marginal cost, in

deviations from its industry trend, follows a first-order auto-regressive process

with persistence parameter 𝜌 < 1

𝛽\
. This allows us to estimate the following

system of linear equations:

𝑝 𝑓 𝑡 = Ψ𝑚𝑐 ·𝑚𝑐𝑛
𝑓 𝑡
+ \𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑖×𝑡 + Y 𝑓 𝑡 ,

𝑚𝑐𝑛
𝑓 𝑡
= 𝜌𝑚𝑐𝑛

𝑓 𝑡−1
+ 𝛼 𝑓 + 𝛼𝑖×𝑡 + 𝜖𝑚𝑐

𝑓 𝑡

(Model C)

where the pass-through of transitory shocks to marginal cost into prices is:

Ψ𝑚𝑐
:= (1 − \ ) (1 − Ω) 1 − 𝛽\

1 − 𝛽\𝜌
.

Column (C) presents the estimation results. These estimates are in line with

the ones obtained from the nonlinear GMM specifications, but evenmore precisely

estimated. They imply a price elasticity to a transitory increase in marginal cost

of approximately

𝜕𝑝 𝑓 𝑡

𝜕𝑚𝑐𝑛
𝑓 𝑡

= Ψ𝑚𝑐 = 0.093.

5.1 Robustness to returns to scale

We derived our benchmark model under the assumption that short-run returns

to scale are constant on average. However, if the economy exhibits aggregate

decreasing (increasing) returns to scale, firms’ price adjustments in response to
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changes in economic activity would be more modest (amplified), resulting in a

flatter (steeper) slope of the Phillips curve (see, e.g., Galí 2015). We now investigate

the importance of this channel for our results.

In the general case with arbitrary aggregate returns to scale (a ≠ 0), the slope

of the Phillips curve can be expressed as follows:
18

_ =
(1 − \ ) (1 − 𝛽\ )

\
(1 − Ω)Θ,

where the additional term Θ := 1

1+𝛾a (1−Ω) captures the role of macroeconomic

complementarities that stem from decreasing returns, with a inversely related to

short-run average returns to scale and 𝛾 denoting the elasticity of substitution

across goods within industries.

In Appendix B.3 we provide empirical evidence indicating that our results

are robust to empirically reasonable departures from the assumption of aggregate

constant short-run returns to scale. Following Lenzu et al. (2023), we use data on

physical quantities sold and inputs used to perform a gross output production

function estimation that gives us sector-specific estimates of returns to scale.

Our estimates indicate that the returns to scale of the different sectors, and

consequently in the aggregate, are close to unity. Specifically, the sectoral

estimates range from 0.86 to 1.02, while the aggregate returns to scale are estimated

to be approximately 0.96. This implies a value of a of approximately 0.04.

Calibrating 𝛾 to 4 to obtain a gross aggregate steady-state markup between

1.3 and 1.4, and using our baseline estimate of Ω = 0.55, we obtain a value of

Θ = 0.94. Thus macroeconomic complementarities imply a reduction of the slope

of seven percent relative to our baseline estimate (from 0.06 to 0.056), which is

well within the confidence bounds of our baseline estimates.

18
See Appendix A.2 for derivations.
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6 Aggregate Inflation dynamics

In this section, we assess the capacity of our estimated model to capture the

aggregate times series of inflation for the Belgian manufacturing sector.

To derive an expression for aggregate inflation, we use the equation for the

price index (equation 9) and the equation for the reset price (equation 10). We

then close the model by assuming that nominal marginal cost follows a random

walk with drift.
19

We therefore obtain the following reduced-form expression for

quarterly inflation (see Appendix A.3 for derivations):

𝜋𝑡 = ˜_
(
𝑚𝑐𝑛𝑡 − 𝑝𝑡−1

)
+ 𝛼 + \𝑢𝑡 , (17)

where
˜_ ≡ ˜_(\,Ω) is an analytical function of the structural parameters, 𝛼 captures

trend inflation, and 𝑢𝑡 is the aggregate cost-push shock. According to equation

(17), quarterly inflation is increasing in current nominal marginal cost scaled by

the lagged price level, consistent with the theory presented earlier. As before, the

sensitivity of inflation depends upon the primitive pricing parameters, \ andΩ. We

combine lags of equation (17) to derive an expression in terms of year-over-year

inflation, which depends on a four-quarter moving average of nominal marginal

cost, scaled by the price level:

𝜋
y-y

𝑡 =

3∑︁
𝜏=0

˜_(1 − ˜_)𝜏 (𝑚𝑐𝑛𝑡−𝜏 − 𝑝𝑡−4) + 𝛼y-y. (18)

The black line in Figure 1 plots year-over-year producer-price inflation for

the Belgianmanufacturing sector from PRODCOM. The red line in Figure 1 depicts

the model-implied inflation series. The difference between the black and red lines

is the component of inflation due to the cost-push shock 𝑢𝑡 .

19
This assumption is consistent with the empirical evidence. To show this, we first construct

aggregate marginal cost, 𝑚𝑐𝑛𝑡 , as a weighted average (with Törnqvist weights) of firm marginal

costs𝑚𝑐𝑛
𝑓 𝑡
. Then, we regress𝑚𝑐𝑛𝑡 on its one-quarter lag, instrumenting the latterwith a two-quarter

lag to reduce downward bias due to measurement error. We find that the estimated autoregressive

coefficient is 𝜌𝑚𝑐 = 0.987 (0.015), with Newey-West standard errors in brackets. Additionally, the

Dickey-Fuller test does not reject the null hypothesis of unit root with 𝑍 = −1.639 and p-value

= 0.463. Notice that this estimate is different, although consistent, with those in Table 2, as those

estimates should be interpreted as the persistence of deviations from trend due to the inclusion of

time fixed effects.
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Figure 1: Aggregate inflation dynamics

Notes. This figure compares the inflation dynamics in the data to the model-implied one. The

black line represents manufacturing producer price inflation in the data. The red line is the

model-implied manufacturing producer price inflation constructed as in equation (18).

As we can see, this parsimonious model effectively tracks the broad swings

in Belgian manufacturing inflation over our sample period. It accounts for almost

seventy percent of the variation in inflation (𝑅2 = 0.68) with a correlation of

0.8. Particularly noteworthy is its ability to capture the drop in inflation during

the 2008 financial crisis and the sharp run-up in 2016 and subsequent decline.

Additionally, the model successfully captures the consistent decline in inflation

from 2011 to 2016, although it does not fully capture its amplitude.

Note that, within our framework, unobservable cost-push shocks account for

amuch lower fraction of inflation volatility than typically found in the quantitative

literature.
20

In addition, we purposely chose to compare the data against the

simplest possible framework. For instance, we did not account for other forces

that would further help rationalize inflation dynamics, such as lag-dependence in

inflation, deviations from rational expectations, or imperfect information (see, e.g.,

Galí and Gertler 1999, Jørgensen and Lansing 2023, Gabaix 2020). Incorporating

these forces in future research may further enhance our understanding of the

relationship between inflation dynamics and real economic activity.

20
For example, in Primiceri et al. (2006), cost-push shocks arising from variation in the desired

price and wage markups account for about 70% of inflation volatility.
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7 Reconciliation with the conventional NKPC

In this section, we reconcile our estimates of a high slope for the marginal

cost-based curve with the low estimates of the conventional formulation.

Following the literature, we make assumptions that allow us to establish a

log-linear relationship between marginal cost, prices, and the output gap at the

firm level. Under these assumptions, the output gap-based Phillips curve slope

(̂ ) is the product of the marginal cost-based slope (_) and the output elasticity of

marginal cost (𝜎𝑦):

^ = _ · 𝜎𝑦 .

We then develop two different identification approaches to estimate 𝜎𝑦 from

micro-level data and retrieve^. Consistent with the literature, we find a low output

gap-based slope, which is accounted for by a low elasticity of marginal cost to

changes in output.

7.1 Marginal cost and the output gap at the firm level

To begin, we derive a log-linear relation between firm-level marginal cost and the

output gap, similar to the one typically assumed at the aggregate level to obtain the

conventional formulation of the Phillips curve. In doing so, we allow for general

equilibrium effects that affect firms’ costs marginal cost through the impact of

labor demand on wages (see e.g., Galí 2015).

In particular, we assume real wages are determined in general equilibrium

at the industry level. Accordingly, we can express firm-level log real marginal

cost,𝑚𝑐 𝑓 𝑡 , as a function of the industry real wage𝑤𝑖𝑡 − 𝑝𝑡 and firm-level marginal

product of labor𝑚𝑝𝑛 𝑓 𝑡 :

𝑚𝑐 𝑓 𝑡 = (𝑤𝑖𝑡 − 𝑝𝑡 ) −𝑚𝑝𝑛 𝑓 𝑡

Next, as in the benchmark NK model, we suppose industry real wages are flexible

and increasing in current industry output𝑦𝑖𝑡 . In addition, firmmarginal product of

labor depends inversely on firm output𝑦𝑓 𝑡 and positively on firm productivity 𝑧 𝑓 𝑡 ,
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where the latter may contain both an aggregate and an idiosyncratic component:

𝑚𝑐 𝑓 𝑡 = 𝜎𝑤𝑦𝑖𝑡 + 𝑧 𝑓 𝑡 + a𝑦𝑓 𝑡 .

In the equation above, 𝜎𝑤 denotes the elasticity of real wages with respect to

industry output and the parameter a varies inversely with the short-run returns

to scale in production. The presence of industry output captures the influence

of general equilibrium effects on marginal cost. We assume that labor supply

is industry-specific, which implies that 𝜎𝑤 is independent of whether industry

output is driven by aggregate or industry shocks.

Without loss of generality, we can write log firm output as the sum of log

industry output and idiosyncratic supply (𝜖𝑠
𝑓 𝑡
) and demand (𝜖𝑑𝑡 ) shocks:

𝑦𝑓 𝑡 = 𝑦𝑖𝑡 + 𝜖𝑠
𝑓 𝑡
+ 𝜖𝑑

𝑓 𝑡
.

The supply and demand shocks are linear, respectively, in the idiosyncratic

component of the productivity factor 𝑧 𝑓 𝑡 and in the firm demand shifter 𝜑 𝑓 𝑡 .

Finally, we define the natural levels of industry and firm output, 𝑦∗𝑖𝑡 and 𝑦
∗
𝑓 𝑡
.

As is conventional, we define 𝑦∗𝑖𝑡 as the level of 𝑦𝑖𝑡 in the equilibrium with flexible

prices and wages, such that the desired markup is constant. The natural level𝑦∗
𝑓 𝑡
is

defined similarly by also taking into account the idiosyncratic firm supply shock:

𝑦∗
𝑓 𝑡

:= 𝑦∗𝑖𝑡 + 𝜖𝑠
𝑓 𝑡
.

Under these assumptions, we can express the deviation of real firm marginal cost

from the steady state, 𝑚𝑐 𝑓 𝑡 , as a constant-elasticity function of firm-level output

gap:

𝑚𝑐 𝑓 𝑡 = 𝜎𝑦 (𝑦𝑓 𝑡 − 𝑦∗
𝑓 𝑡
) − 𝜎𝑤𝜖𝑑

𝑓 𝑡
, (19)

where the coefficient 𝜎𝑦 := 𝜎𝑤 +a is the elasticity of marginal cost with respect to

the output gap. The error term 𝜎𝑤𝜖𝑑
𝑓 𝑡
accounts for the fact the wages depend only

on the industry component of firm demand and not the idiosyncratic component.

To derive a pricing equation in terms of output that allows us to identify

𝜎𝑦 and therefore ^, we rearrange equation (19) and substitute for𝑚𝑐𝑛
𝑓 𝑡
into Model

A from Section 4.2. As in Model C, we then postulate that nominal output and
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the competitors’ price index, in deviations from their trends, follow first-order

autoregressive processes. This leads to an empirical model that directly relates

firm-level prices and output:

𝑝 𝑓 𝑡 = Ψ𝑦 · 𝜎𝑦𝑦𝑛
𝑓 𝑡
+ Ψ𝑝𝑝

−𝑓
𝑖𝑡

+ \𝑝 𝑓 𝑡−1 + 𝛼 𝑓 + 𝛼𝑠×𝑡 + Y
𝑝

𝑓 𝑡
, (Model D)

where the coefficients Ψ𝑦
and Ψ𝑝

depend on the persistence of shocks:

Ψ𝑦
:= (1 − \ ) (1 − Ω) 1 − 𝛽\

1 − 𝛽\𝜌𝑦
and Ψ𝑝

:= (1 − \ )Ω 1 − 𝛽\

1 − 𝛽\𝜌𝑝
.

The error term Y
𝑝

𝑓 𝑡
:= (1 − 𝜎𝑤 )Y𝑑

𝑓 𝑡
− 𝜎𝑦𝑦∗

𝑓 𝑡
depends on the idiosyncratic demand

shock and the (unobservable) natural level of output.

A complementary way to identify 𝜎𝑦 is to rewrite equation (19) in terms of

nominal marginal cost. Then, taking first differences we obtain:

Δ𝑚𝑐𝑛
𝑓 𝑡
= 𝜎𝑦Δ𝑦𝑛

𝑓 𝑡
+ 𝛼 𝑓 + 𝛼𝑠×𝑡 + Y𝑚𝑐

𝑓 𝑡
, (Model E)

where the price level is absorbed into the sector-by-time fixed effects and the error

term Y𝑚𝑐
𝑓 𝑡

:= −𝜎𝑤Δ𝜖𝑑
𝑓 𝑡
− 𝜎𝑦Δ𝑦∗

𝑓 𝑡
. Unlike Model D, which directly maps into the

dynamic pass-through framework developed in section 4.2, Model E allows us

to directly estimate the elasticity of interest from contemporaneous changes of

marginal cost and output.

7.2 Identification of 𝜎𝑦 and ^

We take Model D and Model E to the data to identify the elasticity 𝜎𝑦 and

therefore recover the slope of the output gap-based NKPC ^. To do so, we

measure firm-level nominal output 𝑦𝑛
𝑓 𝑡
with value added (revenues minus costs of

intermediate inputs). The identification of 𝜎𝑦 requires us to isolate variation in𝑦𝑛
𝑓 𝑡

that is orthogonal to both the firm-level natural level of output and idiosyncratic

demand shocks, as both enter the error terms Y𝑚𝑐
𝑓 𝑡

and Y
𝑝

𝑓 𝑡
.

To tackle this issue, we follow the literature that estimates output and

unemployment gap-based NKPCs by exploiting shifts in aggregate demand. We

use high-frequency monetary policy shocks for the Euro area. We then construct

a Bartik-style instrument that allows us to improve the power of the aggregate
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shocks and be able to include sector-by-time fixed effects.

In detail, for each industry 𝑖 , we estimate the sensitivities to aggregate

demand shock (𝜓𝑖 ) by projecting firm-level nominal value-added output on the

lagged monetary policy shock (𝑀𝑆𝑡−1):
21

𝑦𝑛
𝑓 𝑡
= 𝛼 𝑓 +𝜓𝑖𝑀𝑆𝑡−1 + 𝜖𝑚

𝑓 𝑡
,

We then obtain our demand-side instrument by interacting the aggregate money

shock with the estimated sensitivity,

𝑦𝐼𝑉
𝑓 𝑡

:= ˆ𝜓𝑖 ·𝑀𝑆𝑡−1.

This shifter is orthogonal to both aggregate and idiosyncratic supply shocks as

well as idiosyncratic demand shocks. However, it picks up movements in firms’

output due to general equilibrium effects as it captures common demand shocks

at the industry level. Moreover, unlike the aggregate monetary policy surprises,

it is a powerful instrument as it leverages both variation in the high-frequency

surprises interacted with the cross-industry response to these shocks.

We estimate Models D and E via GMM. For Model D, we calibrate \ and Ω to

our baseline estimates. We then estimate the pass-through equation jointly with

the AR(1) dynamics for output and competitors’ prices.

Table 3 presents the resulting estimates for the output elasticity of marginal

cost and the implied estimates for the slope of the output gap-based Phillips curve.

For model D, we find a value of 𝜎𝑦 = 0.355 and ^ = 0.020. For model E, we find

even smaller estimates, 𝜎𝑦 = 0.213 and ^ = 0.012. The low sensitivity of marginal

cost to movements in output is consistent, for example, with a high degree of

wage rigidity observed in the data (Alvarez et al. 2006). These low estimates of ^

corroborate the findings in previous literature, which concluded that the slope of

the output gap-based and unemployment-based NKPC appears to be flat.

Taken together, the evidence presented in this section helps us reconcile

our Phillips curve estimates with the estimates of the conventional output-based

21
Monetary policy shocks are constructed following Gürkaynak et al. (2005) as the log-change

in the price of overnight index swaps in a narrow window around ECB monetary policy

announcements. The time series of aggregate money shocks are taken from Altavilla et al. (2019).
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Table 3: Estimates of the output gap-based slope

Model: (D) (E)

Panel a: Estimates
𝜎𝑦

0.355 0.213

(0.149) (0.045)

𝜌𝑦 0.853

(0.061)

𝜌𝑝 0.911

(0.005)

Cragg-Donald 𝐹 86 351

Kleibergen-Paap 𝐹 10.6 43.5

Panel b: Slope of the output gap PC
^ 0.020 0.012

(0.008) (0.003)

Firm FE y y

Sect x time FE y y

Notes. This table presents the empirical estimates of models D and E. All models are estimated

using the complete sample. Observations are weighted using Törnqvist weights. Robust standard

errors (reported in parenthesis) are clustered at the industry-by-time level. ^ is obtained from the

estimates of 𝜎𝑦
and calibrating _ = 0.057.

Phillips curve available in the literature. Specifically, the pass-through from

marginal costs to prices is high, as the micro-estimates indicate, but the flatness

of the conventional NKPC is likely due to a low sensitivity of marginal cost

to output. Note that the low marginal cost to output elasticity also suggests

that demand-side shocks likely generate weaker contemporaneous inflationary

pressures than supply-side shocks.

These considerations call for further theoretical and empirical work focusing

on understanding the structural relationship between output and marginal cost,

particularly so given that the elasticity connecting the two could be time-varying

and possibly nonlinear.
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8 Oil shocks, marginal cost and inflation

The recent surge in inflation has reignited the debate concerning the role of

supply shocks in driving price dynamics. The discussion in the previous section

highlighted that it is challenging to assess the impact of such shocks on inflation

through the lenses of the output-based Phillips curve, without relying on a fully

specified macroeconomic model that explicitly addresses the endogeneity of the

natural level of output. The marginal cost-based Phillips curve does not suffer

from this as the impact of supply shocks on marginal cost is measurable, and it

can therefore be used to quantify the pass-through of supply shocks to prices.

To illustrate this point, we estimate the effect of identified oil price shocks on

real marginal cost and inflation. Subsequently, we contrast the empirical impulse

response functions with the theoretical generated by our model, calibrated to

match to our earlier estimates. Following Känzig (2021), we measure oil shocks

as the unexpected movements in oil price futures the day after an OPEC meeting.

Panel a in Figure 2 shows the response of aggregate real marginal cost to a

one-standard-deviation shock that increases the price of Brent crude oil by roughly

fifteen percent. In response to this shock, real marginal cost rises by two to two

and a half percent during the first two quarters. It then gradually returns to

its pre-shock level. The black line in Panel b shows that the oil shock also has

substantial effects on the price level, which displays a delayed but significant and

rather persistent three percent increase.

In Panel b, we assess the ability of our estimatedmarginal cost-based Phillips

curve to reproduce the inflation response to the oil shock. We perform the

following exercise. We assume firms have perfect foresight and feed into our

marginal cost-based Phillips curve a path of the expected real marginal cost that

matches the one generated by the impulse response of marginal cost in Panel a.

We then compute the implied price dynamic and plot it in Panel b (red dotted

line). As we can see, the model performs well in capturing the inflation dynamics

induced by the oil shock. Themodel-based impulse-response function consistently

lies within the confidence bands of the impulse response estimated in the data.
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Figure 2: Dynamic effects of oil shocks

Panel a: Real marginal cost
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Notes. This figure shows the impulse response function of real marginal cost and price level to

aggregate oil shocks estimated via local linear projections. The plot reports the coefficients 𝑏ℎ
from the regressions 𝑥 𝑓 𝑡+ℎ −𝑥 𝑓 𝑡−1 = 𝑎𝑓 +𝑏ℎ𝑂𝑆𝑡−1 +𝜖𝑓 𝑡+ℎ for 𝑥 ∈ {𝑚𝑐, 𝑝} and ℎ = 1, · · · , 8 quarters.
The impact is normalized to a 15.7% increase in Brent crude oil price (one standard deviation). The

dark (light) gray shaded areas are 68 (95) percent confidence bands obtained from Newey-West

standard errors with four quarters of correlation. The red line is the model-based response of

prices calculated by feeding in the path of marginal cost (with perfect foresight) to a Phillips curve,

calibrated with _ = 0.057 and 𝛽 = 0.99. All the regressions are weighted using Törnqvist weights.

This exercise provides additional validation of our empirical estimates and also

demonstrates the utility of the marginal cost-based Phillips curve in tracing the

effects of supply shocks on inflation.
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9 Extension to menu costs

Our baseline framework presumes that firm pricing behavior is time dependent á

la Calvo. With menu costs, the degree of nominal rigidities may differ from the

frequency of price adjustment due to selection in price setting, as we elaborate

shortly. Under certain reasonable conditions, we that our firm-level pricing

regressions correctly identify the degree of nominal rigidities, and therefore our

estimates of the slope of the Phillips curve remain valid.

In the conventional menu cost framework, the fixed cost of adjustment gives

rise to an endogenous inaction region around the target price that is bounded

by “Ss bands.” As a result, price adjustments can be broken down into two

components: shifts in the reset price given the adjustment frequency (the intensive

margin) and shifts in the adjustment frequencies that correspond to shifts in the

Ss bands (the extensive margin). As discussed by Caballero and Engel (2007), the

extensive margin gives rise to a selection effect, wherein firms farthest away from

their target price are more likely to adjust. The selection effect implies that, for a

given price adjustment frequency, there will be greater price flexibility in themenu

cost framework compared to the corresponding Calvo setup, which features only

intensive margin adjustments.

Despite these differences, Auclert et al. (2022) argues that, when aggregate

shocks are not too large, there exists an approximate observational equivalence

between models with Calvo rigidities and canonical models with menu costs

(Golosov and Lucas 2007; Nakamura and Steinsson 2010).
22

In particular, a Calvo

model calibrated with a “fictitious” degree of nominal rigidities
˜\ serves as a good

approximation of canonical menu cost models calibrated using the frequency of

22
The authors show that, up to a first-order approximation of the price response, one can derive

two “virtual hazard rates” (i.e., fictitious probabilities of keeping the price fixed between any two

consecutive periods) that exactly replicate both the intensive and extensivemargins of adjustments.

It follows that, quantitatively, an average of the two virtual hazard rates can be used to calibrate a

time-dependent model so that the aggregate response of the price level is similar to that of a menu

cost model. Moreover, the average virtual hazard rate is approximately flat for a wide range of

calibrations, which implies that the adjustment probability declines geometrically.
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price adjustments in the data (1 − \ ).23 In particular, when the equivalence result

holds, we can express the conditional expectation of a firm’s price change as:

E{𝑝 𝑓 𝑡 − 𝑝 𝑓 𝑡−1 |I𝑡 } ≈ (1 − \ ) (𝑝𝑜
𝑓 𝑡
− 𝑝 𝑓 𝑡−1)︸                    ︷︷                    ︸

Calvo term

+ (\ − ˜\ ) (𝑝𝑜
𝑓 𝑡
− 𝑝 𝑓 𝑡−1)︸                    ︷︷                    ︸

Selection term

, (20)

The selection term captures the fact that adjusting firms are not a random sample

of the population, but are exactly those whose reset price is farthest from their

price in the previous period. Rearranging equation (20) leads to a population

regression equivalent to equation (15) in Section 4.1, but with
˜\ replacing \ :

E{𝑝 𝑓 𝑡 |I𝑡 } ≈ (1 − ˜\ )𝑝𝑜
𝑓 𝑡
+ ˜\𝑝 𝑓 𝑡−1. (21)

Next, combining equation (21) with the expression for the optimal reset price

in (8) leads to the following generalized Phillips curve under menu costs:

𝜋𝑡 ≈ ˜_ 𝑚𝑐𝑡 + 𝛽 E𝑡 {𝜋𝑡+1} + 𝑢𝑡 , where
˜_ :=

(1 − ˜\ ) (1 − 𝛽 ˜\ )
˜\

(1 − Ω).

Note that this generalized slope takes the same form as under Calvo, but with
˜\

replacing \ . Since
˜\ ≤ \ because of selection, the slope is steeper. Therefore,

when the approximate equivalence holds, our empirical methodology remains

valid because it correctly identifies the degree of nominal rigidities and hence the

slope of the generalized Phillips curve.

Finally, we calculate the average frequency of price changes using PPI

microdata and obtain an estimate for (1 − \ ) = 0.32. As this number closely

matches our estimates of
˜\ ≈ 0.7, selection does not appear to play a major role

in our sample. This is further confirmed by evidence on the observed kurtosis of

price changes (Alvarez et al. 2016). Using again PPI data, we calculate the kurtosis

to be 5.4, which is in line with the kurtosis produced by standard Calvo models

(around 6) and larger than canonical menu cost models (between 1 and 3).

23
See also Gertler and Leahy (2008) for conditions under which an exact equivalence result holds.
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10 Concluding remarks

We use disaggregated data to identify the slope of the primitive form of the New

Keynesian Phillips curve, which features marginal cost as a relevant measure of

economic activity. We observe a high pass-through of marginal cost into prices, as

evidenced by both the microdata and the ability of the marginal cost-based Phillips

curve to track aggregate inflation dynamics. We have also shown that a low

elasticity of marginal cost to output can reconcile the low sensitivity of aggregate

inflation to output (or employment) with the high pass-through of marginal cost.

Though our analysis is based on pre-pandemic data, it also offers useful

insights for the current surge in inflation. First, recent research has shown that

supply-side shocks are an important driver of the current inflation surge (e.g.,

Di Giovanni et al. 2022). We illustrated with the example of oil shocks how, unlike

the conventional formulation, the primitive NKPC provides a convenient way of

examining the transmission of supply shocks to inflation.

Secondly, recent research suggests that the sensitivity of inflation to output

might have increased. For example, Benigno and Eggertsson (2023) argue that

the slope of the Phillips curve has risen. Our analysis suggests that a candidate

explanation is an increase in the elasticity of marginal cost with respect to output,

due for example to supply-side constraints. Understanding the primitive drivers of

this elasticity and how itmay evolve over time is a fruitful topic for future research.

More broadly, our framework characterizes inflation dynamics conditional

on the path of marginal cost. A logical next step is to endogenize the behavior

of marginal cost and then use microdata to estimate this relationship. As we

discussed, wage rigidity and/or other labor market frictions rule out a simple

log-linear relation between real marginal cost and the output gap. When both

nominal wages and output prices are set for multiple periods, output will still

influence marginal cost, but not in the simple way implied by the conventional

NKPC formulation.
24

Accordingly, modeling the evolution of marginal cost in a

way that also factors in wage dynamics is an important task for the future.

24
See Lorenzoni and Werning (2023) for a recent discussion.
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Appendix for Online Publication

A Derivations

This section provides additional information and derivations of the key equations

presented in Section 2. We begin showing how the markup function in the

paper maps to the markup functions under two prominent frameworks featuring

imperfect competition. We then present the aggregation steps followed to derive

the Phillips curve.

A.1 Derivation of markup function

Dynamic oligopoly with nested CES preferences

Assume that there is a continuum of industries (indexed by 𝑖) and a finite number

of firms 𝑁 within each industry. Each firm is indexed by 𝑓 (or 𝑗 ). Within each

industry, firms compete à la Bertrand. In this environment, the price indexes for

each industry 𝑃𝑖𝑡 and the aggregate price index 𝑃𝑡 are defined, respectively, as:

𝑃𝑖𝑡 :=
©« 1

𝑁

𝑁∑︁
𝑓 =1

(𝜑 𝑓 𝑖𝑡𝑃𝑓 𝑖𝑡 )1−𝛾ª®¬
1

1−𝛾

; 𝑃𝑡 :=

(∫
𝑖∈𝐼

(𝜑𝑖𝑡𝑃𝑖𝑡 )1−𝜎𝑑𝑖

) 1

1−𝜎
,

where 𝜑 𝑓 𝑖𝑡 is a firm-specific relative demand shifter (firm appeal), and 𝜑𝑖𝑡 is an

industry-specific demand shifter (relative across industries). In what follows, the

subscript 𝑖 is dropped when redundant and we normalize the steady-state price

level to simplify the notation. The demand function for firm 𝑓 ∈ F𝑖 takes a nested
CES form with the elasticity of substitution across industries 𝜎 > 1 and elasticity

1



of substitution within industries 𝛾 > 𝜎 :

D𝑓 𝑡+𝜏 =

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝜑𝑖𝑡+𝜏𝑃𝑖𝑡+𝜏

)−𝛾 (
𝜑𝑖𝑡+𝜏𝑃𝑖𝑡+𝜏

𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 . (1)

Firms internalize the dynamic effect of their choices on the industry price

index and on industry demand. Therefore, the residual elasticity of demand faced

by firm 𝑓 takes the following form:

𝜖𝑓 𝑡+𝜏 := −
𝜕 lnD𝑓 𝑡+𝜏

𝜕 ln 𝑃𝑜
𝑓 𝑡

= 𝛾 − (𝛾 − 𝜎) 𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

. (2)

We can further characterize the derivative above. First, the price index of

competitors of firm 𝑓 is defined as:

𝑃
−𝑓
𝑖𝑡

:=
©« 1

𝑁 − 1

𝑁−1∑︁
𝑗≠𝑓

(𝜑 𝑗𝑖𝑡𝑃 𝑗𝑖𝑡 )1−𝛾ª®¬
1

1−𝛾

.

It follows that 𝑃
1−𝛾
𝑖𝑡

= 𝑁−1

𝑁

(
𝑃
−𝑓
𝑖𝑡

)
1−𝛾

+ 1

𝑁

(
𝜑 𝑓 𝑡𝑃

𝑜
𝑓 𝑡

)
1−𝛾

. Next, using the definition

of the industry price index 𝑃𝑖𝑡 and denoting by Z 𝑓 𝑡+𝜏 :=
𝜕𝑝

−𝑓
𝑖𝑡+𝜏

𝜕𝑝𝑜
𝑓 𝑡

, its derivative with

respect to the firms’ reset price is given by:

𝜕𝑃𝑖𝑡+𝜏
𝜕𝑃𝑜

𝑓 𝑡

= 𝑃
𝛾

𝑖𝑡+𝜏

[(
𝑁 − 1

𝑁

)
(𝑃−𝑓

𝑖𝑡+𝜏 )
−𝛾Z 𝑓 𝑡+𝜏 +

(
1

𝑁

)
(𝜑 𝑓 𝑡 )1−𝛾 (𝑃𝑜

𝑓 𝑡
)−𝛾

]
.

Multiplying both sides by

𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏
, we obtain:

𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

= Z 𝑓 𝑡+𝜏

(
𝑁 − 1

𝑁

) (
𝑃
−𝑓
𝑖𝑡+𝜏
𝑃𝑖𝑡+𝜏

)1−𝛾

+ 1

𝑁

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)
1−𝛾

= Z 𝑓 𝑡+𝜏 (1 − 𝑠 𝑓 𝑡+𝜏 ) + 𝑠 𝑓 𝑡+𝜏 ,

where 𝑠 𝑓 𝑡+𝜏 := 1

𝑁

𝑃𝑜
𝑓 𝑡
D𝑓 𝑡+𝜏

𝑃𝑖𝑡𝑌𝑖𝑡+𝜏
= 1

𝑁

(
𝜑 𝑓 𝑡+𝜏𝑃

𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)
1−𝛾

denotes the within industry revenue

share of firm 𝑓 , and 𝑌𝑖𝑡+𝜏 := 𝜑
𝛾−𝜎
𝑖𝑡+𝜏

(
𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏 is the industry demand. Replacing

the expression for
𝜕𝑝𝑖𝑡+𝜏
𝜕𝑝𝑜

𝑓 𝑡

into equation (2), we find that the within-industry

elasticity of demand faced by firm 𝑓 is given by:

𝜖𝑓 𝑡+𝜏 = 𝛾 − (𝛾 − 𝜎)
[
Z 𝑓 𝑡+𝜏 (1 − 𝑠 𝑓 𝑡+𝜏 ) + 𝑠 𝑓 𝑡+𝜏

]
. (3)
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The intuition behind this expression is straightforward. The stronger the reaction

of competitors to a firm’s price change—captured by Z 𝑓 𝑡+𝜏—, the lower the residual

elasticity of demand is. A low residual elasticity of demand, in turn, implies that

the firm can sustain a higher markup in equilibrium. This result mirrors the one

in the dynamic oligopoly environment in Wang and Werning (2022) and it nests

a number of static environments featuring imperfectly competitive firms. In a

static oligopoly, 𝜖𝑓 𝑡+𝜏 = 0 for 𝜏 > 0. In Atkeson and Burstein (2008)’s static

Nash oligopoly, 𝜖𝑓 𝑡+𝜏 = 0 for 𝜏 > 0 and Z 𝑓 𝑡+𝜏 = 0 for all 𝜏s. Under monopolistic

competition, 𝑁 → ∞, which implies Z 𝑓 𝑡+𝜏 → 0 and 𝑠 𝑓 𝑡+𝜏 → 0.

We now use this result to derive the expression for the log-linearized desired

markup in equation (7) in the paper. As is standard, we log-linearize around a

symmetric Nash steady state (Atkeson and Burstein, 2008).
25

Log-linearizing the

elasticity in (3) around the steady state we obtain the steady state residual demand

elasticity:

𝜖 = 𝛾 − (𝛾 − 𝜎) 1

𝑁
,

which corresponds to the expression in Atkeson and Burstein (2008). In this model,

the desired markup is given by the Lerner index `𝑓 𝑡+𝜏 := ln(𝜖𝑓 𝑡+𝜏/(𝜖𝑓 𝑡+𝜏 − 1)).
Log-linearizing this expression and substituting the expression for steady state

residual demand elasticity we obtain the expression for the log-linearized desired

markup (in deviation from steady state) in equation (7):

`𝑓 𝑡+𝜏 − ` = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝

−𝑓
𝑖𝑡+𝜏

)
+ 𝑢`

𝑓 𝑡+𝜏 ,

25
The symmetry assumption is standard in the literature (e.g., Midrigan (2011) and Alvarez

and Lippi (2014)), which eases the notation but is largely immaterial for our estimation purposes.

Relaxing this assumption would imply that firm-specific steady-state demand elasticities, 𝜖𝑓 . In

this case, the estimates of the parameters of our pricing equations should be interpreted as average

across firms. The assumption of Nash steady state, also standard the literature, implies that Z 𝑗,𝜏 = 0

at the steady state for all 𝑗s and 𝜏s. This comes with some loss of generality, but two points can

be made. First, as shown by Wang and Werning (2022), one can write a "behavioral" model with

the weaker assumption that E{Z 𝑗,𝜏 } = 0 for all 𝑗s and 𝜏s that delivers, under specific values for

the elasticities 𝜎 and 𝛾 , a pass-through of shocks to marginal cost into prices that is qualitatively

the same as the one produced by the Nash model. Secondly, these considerations also apply to

our empirical analysis, as we directly estimate the parameters (Γ, in particular) rather than the

underlying elasticities.
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where Γ :=
(𝛾−𝜎) (𝛾−1)
𝜖 (𝜖−1)

𝑁−1

𝑁
> 0 denotes the markup elasticity with respect to prices

and

𝑢
`

𝑓 𝑡
:= − (𝛾 − 𝜎) (𝛾 − 1)

𝜖 (𝜖 − 1) ln𝜑 𝑓 𝑡 +
𝛾 − 𝜎

𝜖 (𝜖 − 1)
𝑁 − 1

𝑁
Z 𝑓 𝑡 , (4)

captures residual variation in the markup that depends on the demand shifters and

changes in the slope of competitors’ reaction function.

Finally, using these expressions, we can show how to obtain the pricing

equation (8). Log-linearizing the industry price index and ignoring constants, we

get:

𝑝𝑖𝑡 =
𝑁 − 1

𝑁
𝑝
−𝑓
𝑖𝑡

+ 1

𝑁
(ln𝜑 𝑓 𝑡 + 𝑝𝑜

𝑓 𝑡
).

Substituting in equation (6) for the markup and rearranging, we obtain:

𝑝𝑜
𝑓 𝑡
= (1 − 𝛽\ )E𝑡

{ ∞∑︁
𝜏=0

(𝛽\ )𝜏
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑡+𝜏 + `) + Ω𝑝
−𝑓
𝑖𝑡+𝜏 + (1 − Ω)𝑢`

𝑓 𝑡+𝜏

)}
, (5)

where, as in the paper, Ω := Γ
1+Γ . This parameter denotes the relative weight

on the price index of competitors (𝑝
−𝑓
𝑖𝑡
) and captures the importance of strategic

complementarities. When Ω is close to one, firms are not strategic and only look

at their marginal cost when resetting prices. In particular, Ω → 0 as 𝑁 → ∞,

which is the monopolistic competition case. The error term in equation (8) is:

𝑢 𝑓 𝑡 := (1 − 𝛽\ ) (1 − Ω)E𝑡

{ ∞∑︁
𝜏=0

(𝛽\ )𝜏𝑢`

𝑓 𝑡+𝜏

}
, (6)

which is therefore a firm-specific shock that depends on the expectation of future

demand shifters.

Monopolistic competition with Kimball preferences

Assume that the industry output 𝑌𝑖𝑡 is produced by a unitary measure of perfectly

competitive firms using a bundle of differentiated intermediate inputs 𝑌𝑓 𝑡 , 𝑓 ∈ 𝑖 .

The bundle of inputs is assembled into final goods using the Kimball aggregator:
26∫

1

0

Υ

(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
𝑑 𝑓 = 1,

26
For simplicity we now abstract from taste shocks.
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where Υ(·) is strictly increasing, strictly concave, and satisfies Υ(1) = 1.

Taking as given the industry demand 𝑌𝑖𝑡 , each firm minimizes costs subject

to the aggregate constraint:

min

𝑌𝑓 𝑡

∫
1

0

𝑃𝑓 𝑡𝑌𝑓 𝑡𝑑 𝑓 s.t.

∫
1

0

Υ

(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
𝑑 𝑓 = 1.

Denoting by𝜓 the Lagrange multiplier of the constraint, the first-order condition

of the problem is:

𝑃𝑓 𝑡 = 𝜓Υ′
(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
1

𝑌𝑖𝑡
(7)

Define implicitly the industry price index 𝑃𝑖𝑡 as:∫
1

0

𝜙

(
Υ′(1)

𝑃𝑓 𝑡

𝑃𝑖𝑡

)
𝑑 𝑓 = 1

where 𝜙 := Υ ◦ (Υ′)−1
. Evaluating the first-order condition (7) at symmetric prices,

𝑃𝑓 𝑡 = 𝑃𝑖𝑡 , we get𝜓 =
𝑃𝑖𝑡𝑌𝑖𝑡
Υ′ (1) . Replacing for𝜓 , we get the demand function:

𝑃𝑓 𝑡

𝑃𝑖𝑡
=

1

Υ′(1)Υ
′
(
𝑌𝑓 𝑡

𝑌𝑖𝑡

)
. (8)

Therefore, the demand function faced by firms when resetting prices is:

D𝑓 𝑡+𝜏 =

[
(Υ′)−1

(
Υ′(1)

𝑃𝑜
𝑓 𝑡

𝑃𝑖𝑡+𝜏

)] (
𝑃𝑖𝑡+𝜏
𝑃𝑡+𝜏

)−𝜎
𝑌𝑡+𝜏

Taking logs of equation (A.1) and differentiating, we get the residual elasticity of

demand:

𝜖𝑓 𝑡+𝜏 := −
𝜕 lnD𝑓 𝑡+𝜏

𝜕 ln 𝑃𝑜
𝑓 𝑡

= −
Υ′

(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

)
Υ′′

(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

)
·
(
𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

) (9)

We now use this result to derive the expression for the log-linearized desired

markup in equation (7) in the paper, under monopolistic competition with Kimball

preferences. As above, for ease of exposition, we focus on the symmetric steady

state. Denote the steady-state residual demand elasticity by 𝜖 = − Υ′ (1)
Υ′′ (1) and by by

𝜖′ the derivative of the residual demand elasticity 𝜖𝑓 𝑡+𝜏 in (9) with respect to

𝑌𝑓 𝑡+𝜏
𝑌𝑖𝑡+𝜏

,
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evaluated at the steady state:

𝜖′ =
Υ′(1) (Υ′′′(1) + Υ′′(1)) − (Υ′′(1))2

(Υ′′(1))2
≤ 0. (10)

The equation above holds with equality if the elasticity is constant (e.g., under CES

preferences). Also in this model, the desired markup is given by the Lerner index.

Log-linearizing the Learner index around the steady state and using equation (10),

we have that, up to a first-order approximation, the log-markup (in deviation from

steady state) is equal to:

`𝑓 𝑡+𝜏 − ` =
𝜖′

𝜖 (𝜖 − 1)
(
𝑦𝑓 𝑡+𝜏 − 𝑦𝑖𝑡+𝜏

)
Finally, log-linearizing the demand function (A.1) and using it to replace the log

difference in output, we obtain:

`𝑓 𝑡+𝜏 − ` = −Γ
(
𝑝𝑜
𝑓 𝑡
− 𝑝𝑖𝑡+𝜏

)
where, in the case of Kimball preferences, the sensitivity of the markup to the

relative price is given by Γ := 𝜖′

𝜖 (𝜖−1)
1

Υ′′ (1) .

Notice that, without loss of generality, 𝑝𝑖𝑡+𝜏 = 𝑝
−𝑓
𝑖𝑡+𝜏 because of the continuum

of firms within an industry. Substituting into the pricing equation (6) and

rearranging leads to the expression equation (7).

Finally, following the same steps as the previous section, we obtain Ω := Γ
1+Γ

and the corresponding mapping to the pricing equation in (8).
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A.2 Aggregation and the Phillips Curve

Suppose 𝑁 < ∞ and order firms in each industry from 1 to 𝑁 .
27 28

The aggregate

price index (in log-linear terms) is:

𝑝𝑡 =

∫
𝑖∈𝐼

©« 1

𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡
ª®¬𝑑𝑖,

(In the paper, we dropped the industry subscript for ease of notation.) Denote by

𝐴★
𝑓 𝑡
for 𝑓 ∈ {1, . . . , 𝑁 } the set of industries in which the 𝑓 -th firm can adjust. The

price index can then be rewritten as:

𝑝𝑡 =
1

𝑁

𝑁∑︁
𝑓 =1

(∫
𝑖∈𝐼/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 +
∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖

)
,

where we are using the fact that firms that cannot adjust set their price to their

𝑡 −1 level, whereas firms that can adjust set their price to their optimal reset price.

Since 𝐴★
𝑓 𝑡
has measure 1 − \ , and the identity of firms that adjust is an i.i.d.

draw from the total population of firms, using the law of large numbers for each

𝑓 = {1, . . . , 𝑁 } across industries we have that:29

1

𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐼/𝐴★

𝑓 𝑡

𝑝 𝑓 𝑖𝑡−1𝑑𝑖 = \

∫
𝑖∈𝐼

©« 1

𝑁

𝑁∑︁
𝑓 =1

𝑝 𝑓 𝑖𝑡−1

ª®¬𝑑𝑖 = \𝑝𝑡−1

and

1

𝑁

𝑁∑︁
𝑓 =1

∫
𝑖∈𝐴★

𝑓 𝑡

𝑝𝑜
𝑓 𝑖𝑡
𝑑𝑖 = (1 − \ )

∫
𝑖∈𝐼

©« 1

𝑁

𝑁∑︁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

ª®¬𝑑𝑖.
Defining 𝑝𝑜𝑡 :=

∫
𝑖∈𝐼

(
1

𝑁

∑𝑁
𝑓 =1

𝑝𝑜
𝑓 𝑖𝑡

)
𝑑𝑖 as the average reset price in the economy, we

27
Notice that the same argument goes through with minor modifications but heavier notation

for 𝑁𝑖 ≠ 𝑁 for a non-zero measure of industries. In general, heterogeneity of the parameters

can be accommodated by repeating the same argument for each group of homogeneous industries

with non-zero measure and then taking weighted averages of different industries. See for example

Wang and Werning (2022), appendix C2.

28
Letting 𝑁 → ∞, all results hold under Kimball preferences.

29
The i.i.d. assumption implies that:

∫
𝑖∈𝐵⊆[0,1] 𝑝 𝑓 𝑖𝑡𝑑𝑖 = 𝑃𝑟 (𝐵)

∫
𝑖∈𝐼 𝑝 𝑓 𝑖𝑡𝑑𝑖 . Notice also that∫

𝑖∈[0,1]

(
1

𝑁

∑𝑁
𝑓 =1

𝑝
−𝑓
𝑖𝑡

)
𝑑𝑖 =

∫
𝑖∈[0,1]

(
1

𝑁

∑𝑁
𝑓 =1

[
𝑁

𝑁−1
𝑝𝑖𝑡 − 1

𝑁−1
𝑝 𝑓 𝑖𝑡

] )
𝑑𝑖 = 𝑝𝑡 .
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obtain:

𝑝𝑡 = \𝑝𝑡−1 + (1 − \ )𝑝𝑜𝑡 ,

which is equation (9) in the paper.
30

Next, we replace the aggregate reset price, 𝑝𝑜𝑡 , with an expression that

depends on aggregate marginal costs and prices. Using the definition of firm-level

marginal cost in equation (5), under aggregate decreasing returns to scale, in

log-terms we have that:

𝑚𝑐𝑛
𝑓 𝑖𝑡

= 𝑐𝑖𝑡 + 𝑎 𝑓 𝑖𝑡 + a𝑦𝑓 𝑖𝑡 .

The average marginal cost in the industry is𝑚𝑐𝑛𝑖𝑡 := 1

𝑁

∑𝑁
𝑓 =1

𝑚𝑐𝑛
𝑓 𝑖𝑡
, which implies:

𝑚𝑐𝑛𝑖𝑡 = 𝑐𝑖𝑡 + 𝑎𝑖𝑡 + a𝑦𝑖𝑡 ,

where a is the average return to scale in production. Combining the two equations

above and subtracting the (log) industry price index on both sides, we obtain an

expression that relates real marginal costs to cost shifters and output:

𝑚𝑐 𝑓 𝑖𝑡 =𝑚𝑐𝑖𝑡 + (𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 ) + a (𝑦𝑓 𝑖𝑡 − 𝑦𝑖𝑡 ).

We use the demand function to express the log output deviation,𝑦𝑓 𝑖𝑡 −𝑦𝑖𝑡 , in terms

of log prices. In the case of CES preferences (see equation (1)), we obtain:

𝑚𝑐 𝑓 𝑖𝑡 =𝑚𝑐𝑖𝑡 + (𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 ) − 𝛾a (𝑝𝑜
𝑓 𝑖𝑡

− 𝑝𝑖𝑡 ) − 𝛾a ln𝜑 𝑓 𝑖𝑡 ,

where 𝛾 denotes the within-industry elasticity of substitution.
31

We then proceed with the following steps in order: we manipulate equation

(5) to express the reset price in recursive form, decompose firm-level nominal

marginal cost into firm-level real marginal cost and the industry price index prices,

30
Notice that 𝑝𝑡 = \𝑝𝑡−1 + (1 − \ )𝑝𝑜𝑡 holds with Kimball preferences as well up to a first-order

approximation around the symmetric steady state.

31
A similar expression holds under monopolistic competition with Kimball preferences. In this

case, 𝛾 is replaced with the corresponding elasticity of relative output to relative prices, 1/Υ′′ (1).
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and finally use equation (A.2) to replace for firm-level real marginal cost:

𝑝𝑜
𝑓 𝑖𝑡

= (1 − 𝛽\ )
(
(1 − Ω) (𝑚𝑐𝑛

𝑓 𝑖𝑡
+ `) + Ω𝑝

−𝑓
𝑖𝑡

+ (1 − Ω)𝑢`

𝑓 𝑖𝑡

)
+ 𝛽\E𝑡𝑝

𝑜
𝑓 𝑖𝑡+1

= (1 − 𝛽\ )Θ
(
(1 − Ω)𝑚𝑐𝑖𝑡 + Ω𝑝

−𝑓
𝑖𝑡

+ (1 − Ω) (1 + 𝛾a)𝑝𝑖𝑡 + (1 − Ω)𝑢`

𝑓 𝑖𝑡

)
+ 𝛽\E𝑡𝑝

𝑜
𝑓 𝑖𝑡+1

+ (1 − 𝛽\ )Θ(1 − Ω)
(
𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 − 𝛾a ln𝜑 𝑓 𝑖𝑡

)
,

where Θ := 1

1+𝛾a (1−Ω) captures macroeconomic complementarities due to

aggregate returns to scale in production.

Finally, averaging across firms and industries, we have that the aggregate

reset price is given by:

𝑝𝑜𝑡 = (1 − 𝛽\ ) ((1 − Ω)Θ𝑚𝑐𝑡 + 𝑝𝑡 ) + 𝛽\E𝑡𝑝
𝑜
𝑡+1

+ \

1 − \
𝑢𝑡 ,

where 𝑢𝑡 :=
(1−\ ) (1−𝛽\ )

\
(1 − Ω)Θ

∫
𝑖∈𝐼

(
1

𝑁

∑𝑁
𝑓 =1

𝑢
`

𝑓 𝑖𝑡

)
𝑑𝑖 is an

aggregate cost-push shock and

(
𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 + 𝛾a ln𝜑 𝑓 𝑖𝑡

)
is such that∫

𝑖∈𝐼

(
1

𝑁

∑𝑁
𝑓 =1

(𝑎 𝑓 𝑖𝑡 − 𝑎𝑖𝑡 + 𝛾a ln𝜑 𝑓 𝑖𝑡 )
)
𝑑𝑖 = 0. This follows from the i.i.d. assumption

on price adjustments, which implies that the average firm-level shifter of resetting

firms coincides with the unconditional average.

Subtracting 𝑝𝑡 from both sides and using the log-linearized price index:

𝑝𝑜𝑡 − 𝑝𝑡 = (1 − 𝛽\ ) (1 − Ω)Θ𝑚𝑐𝑡 + 𝛽\ (E𝑡𝑝𝑜𝑡+1
− 𝑝𝑡 ) +

\

1 − \
𝑢𝑡

⇒ \

1 − \
𝜋𝑡 = (1 − 𝛽\ ) (1 − Ω)Θ𝑚𝑐𝑡 + 𝛽\E𝑡

(
\

1 − \
𝜋𝑡+1 + 𝜋𝑡+1

)
+ \

1 − \
𝑢𝑡

Rearranging one obtains the marginal cost-based Phillips curve:

𝜋𝑡 = _Θ𝑚𝑐𝑡 + 𝛽E𝑡𝜋𝑡+1 + 𝑢𝑡

where _ :=
(1−\ ) (1−𝛽\ )

\
(1 − Ω) is the slope. The equation above highlights that

macroeconomic complementarities alsomediate the pass-through ofmarginal cost

to prices via Θ. Under the assumption of constant aggregate returns to scale, we

have that Θ = 1, and the Phillips curve simplifies to equation (11). This condition

is exactly verified when a = 0, but also when Ω = 1.
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A.3 Derivations of inflation dynamics

Ignoring the intercept, the system of equations is given by:

𝑝𝑜𝑡 = (1 − 𝛽\ ) ((1 − Ω)𝑚𝑐𝑛𝑡 + Ω𝑝𝑡 ) + 𝛽\E𝑡𝑝
𝑜
𝑡+1

+ \

1 − \
𝑢𝑡 ,

𝑝𝑡 = (1 − \ )𝑝𝑜𝑡 + \𝑝𝑡−1,

𝑚𝑐𝑛𝑡 =𝑚𝑐𝑛𝑡−1
+ Y𝑚𝑐

𝑡 .

(11)

We guess and verify using the method of undetermined coefficients that the

solution is of the form:

𝑝𝑜𝑡 = Ξ(𝑚𝑐𝑛𝑡−1
+ Y𝑚𝑐

𝑡 ) + (1 − Ξ)𝑝𝑡−1 +
\

1 − \
𝑢𝑡 ,

𝑝𝑡 = ˜_(𝑚𝑐𝑛𝑡−1
+ Y𝑚𝑐

𝑡 ) + (1 − ˜_)𝑝𝑡−1 + \𝑢𝑡 ,

whereΞ and
˜_ are the coefficients to be determined. Plugging the guessed solution

into the system gives the following restrictions on the parameters:

Ξ = (1 − 𝛽\ ) (1 − Ω + Ω ˜_) + 𝛽\ (Ξ + (1 − Ξ) ˜_),
˜_ = (1 − \ )Ξ.

We select the solution that implies that system (11) has exactly one eigenvalue

larger than one in modulus. This gives the following values for the parameters in

terms of primitives:

Ξ =
𝛽\ (2 − Ω(1 − \ ) − \ ) + Ω(1 − \ ) − 1

2𝛽 (1 − \ )\

+
√︁
(−Ω(1 − \ ) (1 − 𝛽\ ) − 𝛽 (2 − \ )\ + 1)2 + 4𝛽 (1 − Ω) (1 − \ )\ (1 − 𝛽\ )

2𝛽 (1 − \ )\ ,

˜_ = (1 − \ )Ξ.

Rearranging the guessed solution for 𝑝𝑡 = ˜_𝑚𝑐𝑛𝑡 + (1− ˜_)𝑝𝑡−1+\𝑢𝑡 and adding back
the intercept, we obtain equation (17).
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B Data and Measurement

B.1 Data sources and data cleaning

In this section we describe the different administrative sources used to assemble

our micro-level data.

We use the information in PRODCOM to compute the quarterly change in

product- and firm-level prices and to define the boundary of markets (industries)

in which firms compete. PRODCOM is a large-scale survey commissioned by

Eurostat and administered in Belgium by the national statistical office. The

survey is designed to cover at least 90% of domestic production value within each

manufacturing industry (4-digit NACE codes) by surveying all firms operating

in the country with (a) a minimum of 20 employees or (b) total revenue above

4.5 million euros (European Commission 2014). Firms are required to disclose,

on a monthly basis, product-specific physical quantities (e.g., volume, kg., 𝑚2
,

etc.) of production sold and the value of production sold (in euros) for all their

manufacturing products.

Products are defined in PRODCOM by an 8-digit PC code (e.g., 10.83.11.30

is "Decaffeinated coffee, not roasted", 10.83.11.50 is "Roasted coffee, not

decaffeinated", and 10.83.11.70 is "Roasted decaffeinated coffee"). Industries are

defined by the first four digits of the product codes (e.g. Processing of tea and

coffee is "Processing of tea and coffee"). Sectors are defined by the first two digits

of the product codes (AC is "Manufacture of food products, beverages, and tobacco

products"). The industry and sector definitions follow the NACE classification as

the first four digits of PRODCOM codes are identical to the first four digits of the

NACE classification.

In the raw data, there are approximately 4, 000 product headings distributed

across 13 manufacturing sectors. The PC product codes have been revised

several times between 1999 and 2019, with a substantial overhaul in 2008. We

use the conversion tables provided by Eurostat and firm-specific information on

firms’ product baskets to harmonize the 8-digit product codes across consecutive

11



quarters and harmonize 4-digit industry codes over time.
32

In most cases, the

conversion tables provide a unique mapping of the 8-digit product codes across

consecutive years. In a limited number of cases, the mapping is many-to-one,

one-to-many, or many-to-many. The many-to-one mapping is straightforward.

The one-to-many and many-to-many could be problematic. We are able to deal

with most of these cases using information on the basket of products produced by

each firm.
33

In a limited number of cases (less than 0.1% of the sample) we do not

have sufficient information to resolve the uncertainty regarding the mapping. We

drop these observations from the sample. Table 1 reports the list of manufacturing

sectors and their 2-digit PC codes.

We aggregate monthly information at the quarterly level and construct

product-level prices (unit values) by dividing the product-level sales by the

product-level quantity sold. As explained in the paper, we are interested in

domestic prices, that is prices charged by producers in Belgium. PRODCOM does

not require firms to separately report distinguishing between production and sales

to domestic and international customers. Therefore, we recover domestic values

and quantities sold by combining information from PRODCOMwith data on firms’

product-level exports (quantities and sales) available through Belgian Customs

(for extra-EU trade) and through Intrastat Inquiry (for intra-EU trade).
34

We use

the official conversion tables provided by Eurostat to map the CN product codes

classification used in the international trade data to the PRODCOM product code

classification.
35

In the majority of the cases, the CN-to-PC conversion involves

32
The official conversion tables are available at https://ec.europa.eu/eurostat/ramon.

The harmonization of the industry code essentially consists in harmonizing the to NACE rev. 1

industry, used before 2008, to the NACE rev. 2 industry codes, used from 2008.

33
For example, consider a case when the official mapping indicates that product 11.11.11.11 in

year 𝑡 could map to either 22.22.22.21 or 22.22.22.22 in year 𝑡 + 1. Suppose two firms, 𝑓1 and 𝑓2,

report in period 𝑡 sales of product 11.11.11.11 in year 𝑡 . If 𝑓1 reports only sales of 22.22.22.21 and 𝑓2
only reports sales of 22.22.22.22 in year 𝑡 +1 we infer that we should map 11.11.11.11 to 22.22.22.21

for the former and map 11.11.11.11 to 22.22.22.22 for the latter.

34
Importantly, in constructing our measure of domestic sales we address issues related to

carry-along-trade, which might overstate the amount of production of firms that import products

that are destined for immediate sales.

35
The first six digits of the CN product classification codes correspond to the World HS

classification system.
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either a one-to-one or many-to-one mapping, which poses no issues. We drop

the observations that involve one-to-many and many-to-many mappings. These

account for less than 5% of the observations and production value.

We apply the following filters and data manipulations to the PRODCOM

data. First, we only keep firms’ observations in a given quarter if there was a

positive production reported for at least one product in the quarter. This avoids

large jumps in the quarterly values due to non-reporting for somemonths by some

firms. In the rare cases when a firm reports positive values but quantities are

missing, we impute quantity sold from the average value to quantity ratio in the

months where both values and quantities are reported. Second, we require firms to

file VAT declarations and Social Security declarations (as explained below): these

two data sources are needed to measure firms’ marginal costs.

The second important use of international trade data is to obtain information

on international competitors selling their manufacturing products in Belgium.

For each domestic firm, the merged Customs–Intrastat data reports the quantity

purchased (in Kg) and sales (converted to Euros) of different manufacturing

products (about 10,000 distinct CN product headings) purchased by Belgian firms

from each foreign country. As is standard, we define a foreign competitor as a

foreign country–domestic buyer pair. For each foreign competitor, we aggregate

the product-level sales and quantity sold at the quarterly level (the reporting is

monthly in the raw data) and compute quarterly prices (unit values) by taking the

ratio of the two.
36

We leverage data from two administrative sources to measure firms’ total

production (turnover) and variable production costs at a quarterly frequency.

Belgian firms file VAT declarations to the Belgian tax authority that contain

information on the total sales of the enterprise as well as information on purchases

36
Some CN codes change over time (although to a smaller extent relative to the PC codes). We

use the official conversion tables, also available on the Eurostat website, to map CN product codes

across consecutive years. We only make an adjustment if the code is a one-to-one change between

two years. We do not take into account changes in PC codes that involve splitting into multiple

codes or multiple PC codes combining into one code. Effectively, these changes in the PC codes

are treated as if new products are generated.
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of raw materials and other goods and services that entail VAT-liable transactions,

including domestic and international transactions. The coverage of the VAT

declarations is almost universal, with a limited number of exceptions that affect

the reporting of sole proprietorship and self-employed and therefore mostly do

not apply to the firms surveyed by PRODCOM.
37

We obtain information on

employment and labor costs (wage bill) from the Social Security declarations filed

on a quarterly basis by each Belgian firm to the Department of Social Security of

Belgium.

We sum firm-quarter level expenses on intermediates and labor to obtain a

measure of total variable costs, whichwe use in the construction of firms’ marginal

costs. We multiply these costs by the ratio of total manufacturing sales (from

PRODCOM) over total sales (from the VAT) to adjust for the fact that some firms

also have some production outside manufacturing.
38

Finally, we apply the following data-cleaning steps to deal with missing

values and outliers. (i) We focus on manufacturing industries, defined by the

NACE rev.2 2-digit codes 15–36, dropping from our sample all product headings

that correspond to mining and quarrying and all product codes corresponding

to industrial services. (ii) We drop observations referring to firms whose sales

from manufacturing products (as measured in PRODCOM) is lower than seventy

percent of total firm-level sales (as reported in the VAT declarations). This ensures

that our sample includes firms’ whose real activity is primarily, if not entirely, in

manufacturing. (iii) As standard, we exclude firms that operate in the "Coke and

refined petroleum products" sector and "Pharmaceuticals, medicinal chemical, and

37
Enterprises file their VAT declaration online, either on a monthly or a quarterly frequency,

depending on some size-based thresholds. Smaller enterprises (turnover < 2.5M euros excl. VAT)

can choose to file at the monthly or quarterly frequency. Larger enterprises file monthly. In the

case of multiple plants or establishments under one VAT identifier, the declaration is filed as a

single file for that VAT identifier. We aggregate all monthly declarations at the quarterly level. At

this reporting frequency, VAT declarations tend to reflect the sales of output produced the previous

quarter. For this reason, we use one quarter leads in VAT declarations to construct the measure of

firm-level value added used in the regressions discussed in Section 7.

38
As mentioned below, we conservatively drop observations referring to firms whose

manufacturing sales are lower than seventy percent of total sales. In the remaining sample, the

ratio has a mean of 0.94 and a median of 0.97, confirming the extensive coverage of PRODCOM.
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botanical products" sector whose output prices are frequently privately bargained

or determined in international markets. We also exclude firms operating in the

"Other manufacturing and repair and installation of machinery and equipment"

sector, which is a residual grouping that consists of firms producing diverse and

varied products for which it is difficult to define an appropriate set of competitors.

(iv) We keep only observations for which we are able to compute product-level

price indexes, the corresponding quantity indexes, competitors’ price indexes,

and marginal costs. (v) We drop observations for which the quarter-to-quarter

change of either the firm-level price index or marginal costs is greater than 100%

in absolute value. (vi) Finally, for each firm-industry pair that enters our dataset

discontinuously we keep only the longest continuous time-spell. This ensures

that each time series used in the estimation has no gaps, which would force us

to interpolate making assumptions about prices and marginal costs when the data

is not recorded.

Table 1: List of manufacturing sectors

Sector Sector definition

NACE Rev.2

2-digits codes

CA Food products, beverages and tobacco products 10–12

CB Textiles, apparel, leather and related products 13–15

CC Wood and paper products, and printing 16–18

CE Chemicals and chemical products 20

CG Rubber and plastics products,

22–23

and other non-metallic mineral products

CH Basic metals and fabricated metal products,

24–25

except machinery and equipment

CI Computer, electronic and optical products 26

CJ Electrical equipment 27

CK Machinery and equipment n.e.c. 28

CL Transport equipment 29–30

Notes. This table reports the list of manufacturing sectors in our sample and the corresponding

2-digit NACE rev. 2 codes.
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B.2 Construction of price indexes

We construct a set of indexes that capture price changes in manufacturing

goods at different levels of aggregation (firm-industry, firm, industry, individual

manufacturing sector, and whole manufacturing sector).

Firm-industry price index. The main variable of interest is the price of

domestically sold manufacturing products at the firm-industry level, 𝑃𝑓 𝑡 , for both

domestic and foreign producers. We construct this variable using information on

prices changes at the most disaggregated level allowed by the data.

Due to repeated product code revisions, it does not exist a consistent 8-digit

product code taxonomy across the entire sample period.
39

Therefore, we compute

the sequence of price changes across consecutive time periods (𝑡 and 𝑡 + 1) by

mapping the product codes at 𝑡 + 1 to their corresponding codes at 𝑡 , aggregate

them at the firm-industry level, and recover the time series of the firm-industry

price index (in levels) by concatenating quarterly price changes.

Specifically, denote by P𝑓 𝑡 the set of products manufactured by firm 𝑓 and

by 𝑃𝑝𝑡 the price (unit value) of a given product 𝑝 ∈ P𝑓 𝑡 . We first compute the

price change for each product, 𝑃𝑝𝑡/𝑃𝑝𝑡−1, appropriately accounting for any change

in product codes. In the construction of the product-level price changes, we drop

product-level observations with abnormally large price jumps in a given quarter

(𝑃𝑝𝑡/𝑃𝑝𝑡−1 > 3 or 𝑃𝑝𝑡/𝑃𝑝𝑡−1 < 1/3). Then, we construct firm-industry price change

as a Törnqvist index:

𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏
𝑝∈P𝑓 𝑡

(𝑃𝑝𝑡/𝑃𝑝𝑡−1)𝑠𝑝𝑡 , (12)

where 𝑠𝑝𝑡 is a Törnqvist weight computed as the average of the sale shares between

𝑡 and 𝑡−1: 𝑠𝑝𝑡 :=
𝑠𝑝𝑡+𝑠𝑝𝑡−1

2
.
40
Finally, we use the sequence of quarterly price changes

39
See Appendix B.1 for additional information on the data.

40
This index accounts for the presence of multi-product firms, by averaging across products

produced by the same firm in a given industry. The Törnqvist weights, 𝑠𝑝𝑡 , give larger weights to

those produces that account for a larger share of firms turnover.
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to construct the time series of firm-industry’s prices (in levels):

𝑃𝑓 𝑡 = 𝑃𝑓 0

𝑡∏
𝜏=𝑡0

𝑓
+1

(
𝑃𝑓 𝜏/𝑃𝑓 𝜏−1

)
, (13)

where 𝑡0

𝑓
denotes the first quarter when 𝑓 appears in our data and 𝑃𝑓 0 is the

price level in that quarter. We normalize 𝑃𝑓 0 to one for all firm-industry pairs

𝑓 in our dataset. As discussed in the paper, this normalization is immaterial for

our empirical analysis as any level-effects are absorbed by the firm-industry fixed

effects included in all our empirical specifications.

Firm price index. As discussed in the paper, the vast majority of firms in our

data operate in only one (4-digit) industry, which implies that the firm-industry

price index, 𝑃𝑓 𝑡 , and the firm price index, 𝑃𝑓 𝑡 , coincide. Yet, in a in a limited

number of cases, it becomes necessary to construct a firm’s price index that

aggregates across different firm-industry price indexes. In doing this, we construct

the firm-level price index 𝑃𝑓 𝑡 following method similar to the one outlined above.

Specifically, we construct a Törnqvist index that aggregates across price changes

of individual (4-digit) industry bundles 𝑖 ∈ 𝐼 𝑓 produced by firm 𝑓 in quarter

𝑡 : 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1 =
∏

𝑖∈𝐼𝑓 (𝑃𝑓 𝑖𝑡/𝑃𝑓 𝑖𝑡−1)𝑠𝑓 𝑖𝑡 , with Törnqvist weights defined as 𝑠 𝑓 𝑖𝑡 :=

(𝑠 𝑓 𝑖𝑡 + 𝑠 𝑓 𝑖𝑡−1)/2, where 𝑠 𝑓 𝑖𝑡 is the share of sales of industry 𝑖 in the firms’ total

sales (across manufacturing industries). We then concatenate the quarterly price

changes above to obtain the price index 𝑃𝑓 𝑡 , normalizing the level of the price index

to one in the first quarter when the firm first appears in our dataset. Note that for

single-industry firms the price index 𝑃𝑓 𝑡 coincides with with the firm-industry

price index 𝑃𝑓 𝑖𝑡 in (13).

Competitors price index. Using a similar approach, we construct the price

index of competitors for each domestic firm. We start computing quarterly

price changes: 𝑃
−𝑓
𝑖𝑡

/𝑃−𝑓
𝑖𝑡−1

=
∏

𝑘∈F𝑖/𝑓 (𝑃𝑘𝑡/𝑃𝑘𝑡−1)𝑠
−𝑓
𝑘𝑡 , with 𝑠

−𝑓
𝑘𝑡

:= 1

2

(
𝑠𝑘𝑡

1−𝑠𝑓 𝑡 +
𝑠𝑘𝑡−1

1−𝑠𝑓 𝑡−1

)
denoting a Törnqvist weight constructed by averaging the residual revenue share

of competitors in the industry at time 𝑡 (net of firm 𝑓 revenues) with that at time
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𝑡 − 1. We then concatenate the changes normalizing the level of the price index

in the first period to one. Also, in this case, the normalization is immaterial for

estimation purposes as our empirical model always includes firm fixed effects.

Note that the set of domestic competitors for each Belgian producer, denoted in

the paper by F𝑖 , includes not only other Belgian manufacturers operating in the

same industry but also foreign manufacturers that belong to the same industry

and sell to Belgian customers.

Industry, sector, and aggregate price index. We construct the industry-level,

sector-level, and aggregate (manufacturing) price indexes by aggregating

quarterly firm-level price changes. The formula to construct the percentage

change in these price indexes is analogous to the one in (12), where now the

Törnqvist weights assigned to each firm-industry price change, 𝑃𝑓 𝑡/𝑃𝑓 𝑡−1, captures

the (weighted) average market shares of the 𝑓 in its own industry, sector, or

manufacturing, respectively. Once again, the level of the indexes is constructed

by concatenating changes and normalizing the level of the price index to one for

the first observation in the time series.

B.3 Estimates of returns to scale

We estimate the elasticities that determine the returns to scale of production (both

short- and long-run) by performing production function estimations. We consider

the following log-production function: 𝑦𝑓 𝑡 = ln𝐴𝑓 𝑡 + 𝑓 (𝑙 𝑓 𝑡 ,𝑚 𝑓 𝑡 , 𝑘 𝑓 𝑡 ; γ). Here,

𝑦𝑓 𝑡 denotes firm-level output (physical quantity) produced by firm 𝑓 in period 𝑡 ,

and 𝐴𝑓 𝑡 captures a firm’s technical efficiency (TFPQ). 𝑓 (·) is the log-gross output
production function, which we model as a Cobb-Douglas aggregate of labor (𝑙 𝑓 𝑡 ),

intermediates (𝑚 𝑓 𝑡 ), and capital (𝑘 𝑓 𝑡 ). The vector of structural parameters to be

estimated is denoted by γ := 𝛾 𝑙 , 𝛾𝑚, 𝛾𝑘 , which collects the output elasticities of the

different inputs.

Following Lenzu et al. (2023), we construct a firm-level quantity index by

deflating firm-level sales by the firm-level price index: 𝑌𝑗𝑡 =
(𝑃𝑌 )𝑓 𝑡
𝑃𝑓 𝑡

. Labor services
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are measured using the wage bill, and intermediates costs are measured as the

total value of materials and services used in production. A measure of the capital

stock is constructed from investments in fixed assets using the perpetual inventory

method. We deflate labor, capital, and intermediate inputs using the corresponding

industry-level producer price deflators.

We estimate the production function separately for each sector, following the

approach developed in Lenzu et al. (2023), which combines the structural approach

developed in Gandhi et al. (2020) with the control function approach developed

by De Loecker et al. (2016) to control for differences in input quality across

firms. This approach identifies the production function parameters by addressing

the simultaneity bias that derives from the correlation between input choices

and unobserved (to the econometrician) productivity (Marschak and Andrews Jr.

(1944)), and it solves the identification problem that affects the estimates of the

output elasticities of flexible inputs.
41

In line with the rest of our analysis, we

perform the production estimation for each industry by weighting observations

using within-industry sales-based Törnqvist weights.

Table 2 presents the estimates of the output elasticities and returns to scale

for individual manufacturing sectors and for the aggregate economy.
42

The latter

is obtained as a sales-weighted average of the sectoral estimates. For our purposes,

the key estimates are the ones regarding the elasticities of variable inputs, whose

sum pins down the short-run returns to scale and determines the strength of

macroeconomic complementarities. Consistent with the previous studies (see, e.g.,

Lenzu et al. (2023) and the references therein), our estimates indicate returns to

scale in the ballpark of unity for most sectors and, therefore, in the aggregate.

41
The details of the estimation routine are provided in the Appendix of Lenzu et al. (2023).

42
We are unable to perform the production function estimation for a handful of the sector

"Computer, electronic and optical products" (CI) due to its small sample size.
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Table 2: Estimates of output elasticities and returns to scale

Output elasticities Returns to scale

Sector Labor Intermediates Capital Long-run Short-run

(𝛾𝑙 ) (𝛾𝑚) (𝛾𝑘 ) (𝛾𝑙 + 𝛾𝑚 + 𝛾𝑘 ) (𝛾𝑙 + 𝛾𝑚)

CA 0.248 0.770 0.094 1.112 1.018

CB 0.201 0.748 0.061 1.010 0.949

CC 0.253 0.729 0.040 1.022 0.982

CE 0.080 0.794 0.124 0.999 0.874

CG 0.242 0.717 0.129 1.088 0.958

CH 0.250 0.721 0.147 1.119 0.972

CJ 0.322 0.646 0.120 1.088 0.967

CK 0.197 0.707 0.180 1.084 0.904

CL 0.149 0.796 0.075 1.020 0.945

Aggregate 0.209 0.749 0.104 1.062 0.958

Notes. This table reports the within-sector average production function elasticities estimated

following the approach in Lenzu et al. (2023), as described above. The first column indicates the

manufacturing sector. The subsequent three columns report the estimates obtained from a quantity

production function estimation. The following two columns report the long-run and short-run

returns to scale. Each row corresponds to a different manufacturing sector. The last row is a

sales-weighted average of the sectoral estimates.
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