Comments on "The Global Credit Cycle"

by Nina Boyarchenko and Leonardo Elias

Stijn Claessens Executive Fellow, Yale School of Management

Ninth ECB Annual Research Conference 2024 19 and 20 September 2024 European Central Bank, Frankfurt am Main

Questions, Approach, Answers of Paper

- Q. Do global credit conditions affect local credit and business cycles?
- Approach: use formal asset pricing applied to a large cross-section of international equity and bond returns, and then use derived factors to study financial and real outcomes
- > A1: Yes, through a Global Credit Factor and Global Risk Factor
 - Which are two distinct factors in pricing equity and bond returns
- > A2: Global credit cycle translates into financial and real effects
 - > A tightening predicts extreme capital flows and less private local credit
 - And leads to extreme, left tail GDP outcomes

1. Relevance of and praise for paper

- Important to know how global financial conditions affect real variables
- Goes beyond other work as it:
 - Employs rigorous asset price modelling
 - Separates credit from risks factors
 - Explicitly allows for non-linearities
 - Takes a predictive approach
- Thus, adds value in theory and practice
 - Many papers document a common component (Global Financial Cycle, GFCy) in asset prices, capital flows, credit, real outcomes but without modelling
 - Empirically shows newly developed risks factors add to other GFCIs

2. Main comment: many moving mechanisms!

- 1. International equity and bond excess returns pricing
 - Assumed to be based off VIX and Duration Match Spread (DMS)
- 2. Characteristics of the Global Credit and Global Risk Factors
 - Non-linearities. Exposures across country and assets classes as expected. Two separate (but no rotation nor scale)
 - But also lining up with other FCIs, MAR, etc. And betas are like CAPM
 - Key value added is the predictability (?)
- 3. Financial and real activity (switches in approach and data
 - Capital flows (episodes). 2. GDP and credit (GVAR+LP). 3. Recessions (0,1)
- Lay out theory, channels and steps more explicitly to show the value added over "traditional" GFCy approaches!

3a. Methodology and Data

Have (implicit) US as the core country

- All rate of returns excess to US 3-month Treasury
- Assumes/builds in that US factors drive global rates of return

Uses the general equity index but individual bond prices

- You say you control for firm 'fundamentals' in bonds, but how?
- And why not in equity too? Or price equity and bond jointly?

Number of observations varies greatly

- From more than 300K for US to a few 100s for asset classes EMEs/ASOEs (could do some more robustness tests
- Liquidity must be issue for some bonds (and equities)

3b. Methodology and Data

What is the prior in predicting? Can one do better w/ a simple EWE?
In the paper, horizon for predicting is the start.. Too late for policy

- Averaging of RHS and financial and real outcomes become coarse
 - Understand need to average, but large loss of information
 - Capital flows episodes are 1,0, where only sudden stops work (not surges
 - Similar on the real side credit and "recessions"
 - Why not the full spectrum of outcomes, fits non-linearity approach
- Useful to break capital flows down by type? (portfolio flows most)
 - Total capital flows will drive real effects? So, what do we learn?
- Data stops in December 2022: effect of interest rate rise?
 - Explore more why this global shock was relatively benign

4. Presentation

- > Do a flow of reasoning chart (for the non-asset pricing reader
- Show explicit Global Credit Factor varies from Global Risk Factor
- Relate extremes more to events, in text and charts
 - e.g., Fig 8 patterns: are extremes global financial crises, Covid, or US
 - Text says: "[some] results seems to be driven by crisis episodes"
- Do more X vs Y, e.g., Figure 5 to show (lack of) mapping
- Text, tables and charts not always line up
 - e.g., Fig 7b does not show much of patterns (R2 = 0?)
- ▶ $5 \neq$ Real activity (covers capital flows, credit and GDP)
- Provide quantitative importance (see next)

Comparison: much more commonality in asset prices than in credit and capital flows

Commonality in:

- > interest rates 75%
- > house prices 60%
- > equity prices 40%
- > credit 30%
- > capital flows 25%

Source: Cerutti and Claessens (2024)