Economic Shocks and Internal Migration

Joan Monras

CEMFI

13-14 December 2016

ECB/CEPR Labour Market Workshop

Labor relocation and negative economic shocks

Does spatial factor relocation respond to local negative economic shocks?

- Maybe:
 - Long-run evidence from historic episodes (for example Hornbeck (2012))
 - Short-run evidence on labor relocation independent of the nature of the shock (Blanchard and Katz, 1992)
- Maybe it doesn't need to:
 - Housing is not destroyed, maybe negative shocks transfer to lower housing prices
 - \rightarrow lowering the incentives of escaping local negative shocks

(Glaeser and Gyourko, 2005)

How does spatial factor relocation respond to local shocks?

• Little evidence showing the mechanism of adjustment to negative shocks

Importance of labor relocation

How fast does labor relocate across local labor markets?

Some papers suggest that relocation costs are high:

 Kennan and Walker (2011) estimate moving costs of around \$300,000 on average (and often the income gains from moving would not compensate for these costs)

But:

- How do these translate into the aggregate movements?
- How important are spillovers across locations created by internal migration in determining aggregate movements?

How does this relocation translate into welfare dynamics across space?

- Can internal migration fully insure against local shocks?
- What share of the initial shock becomes permanent?

This paper

In this paper, I argue that:

Factor relocation is very responsive to local economic shocks

For this, it is important to note that:

- Gross flows of workers between metropolitan areas are larger than net flows
- 2 Out- and in-migration rates need not respond equally

Key intuition:

• It is less "costly" to avoid moving to a hard hit location than moving out from it

First contribution: a new stylized fact

Stylized fact: In-migration rates are more responsive to shocks than out-migration rates

1) During the Great Recession:

- In-migration rates decline in hard hit locations in the short-run
 - A 1% decrease in wages, reduces in-migration rates by .2pp $(\partial (I/L)/\partial Inw \approx .2)$.
- Out-migration rates do not respond in hard hit locations in the short-run
- Thus, net in-migration rates decline in hard hit locations in the short-run
 - Identification: Based on pre-crisis HH indebtedness to identify local labor demand shocks (Mian et al., 2013)

2) How general is this fact?

- 1 Population growth rates mostly explained by differences in in-migration rates
- Prevalent feature in the US across data sets, time spans, geographic aggregations

Main contribution: Dynamic Spatial Equilibrium model

(Very tractable) dynamic spatial general equilibrium model built around:

- Stylized fact about the response of internal migration to shocks
- Porward looking dynamic location choice model (Kennan and Walker (2011))
- 3 Spatial equilibrium model (quantitative version of Rosen (1974) Roback (1982))

Contribution: First paper to combine 1, 2, and 3

Preview of the main results of the model:

Oynamics:

$$N_{t+1,m} = \widetilde{\eta}_t \frac{V_{t,m}^{1/\lambda}}{V_t^{1/\lambda}} N_t + (1 - \eta_{m,t}) N_{t,m}$$
 (1)

Long-run welfare:

$$\Delta \ln V_m \approx \lambda \Delta \ln N_m + \Delta \ln V \tag{2}$$

where $1/\lambda$ is the (easy to estimate) response of in-migration to local shocks.

Third contribution: Great Recession, welfare, and space

Use the quantitative model to explore:

- The potential role of labor relocation after the Great Recession
 - Abstracting from other mechanisms of adjustment
- Welfare changes across locations as a function of the incidence of the Great Recession

Main conclusions:

- 1 Within 10 years the new long-run equilibrium is attained
- ② Internal migration can dissipate around 60 percent of the initial shock
 - Despite the fact that population did not leave from the most affected locations in higher proportions

Outline of the talk

- Introduction
- Stylized facts:
 - The population response during the Great Recession
 - Population growth and internal migration
- Model
 - Basic Setup
 - 2 Mobility, propagation of local shocks and welfare
- The economic importance of internal migration
 - Model Calibration
 - 2 The Great Recession shock and the role of internal migration
 - Welfare evaluation
- Conclusion

How responsive are migration rates to local shocks?

The Great Recession as a local labor demand shock:

- The Great Recession reduced labor demand disproportionately in:
 - Highly leveraged local labor markets (Mian et al., 2013)
- Compare different local labor markets before and after the Great Recession:
 - First stage: Did labor market outcomes worsen in particular locations?
 - Second stage: How did internal migration rates respond?

Main estimation equation

I estimate the following equation:

$$Y_{mt} = \alpha + \beta \ln X_{mt} + Controls + \delta_t + \delta_m + \varepsilon_{mt}$$
(3)

Where Y_{mt} is:

- 1 In-migration rate $\equiv \frac{I_{mt}}{N_{mt}}$
- 2 Out-migration rate $\equiv \frac{O_{mt}}{N_{mt}}$

And where X_{mt} is a measure of the conditions in the local labor market:

wages, unemployment rate, and employment rate in metropolitan area m at time t.

Endogeneity: Migration affects local economic conditions.

Data source: ACS Summary Statistics

Two identification strategies: First Stage

Household debt Shock:

$$\ln X_{mt} = \alpha + \beta$$
 Debt to Income ratio in $2006_m * Shock_t + \delta_m + \delta_t + \eta_{mt}$

Aggregate Demand - employment Shock:

$$\ln X_{mt} = \alpha + \beta \text{Debt to Inc. in '06}_m * \text{Share Non-trade employ. in '00}_m * Shock_t + \delta_m + \delta_t + \eta_{mt}$$

Intuition:

- Mian et al. (2013) show that employment in non-tradables decreases more in more indebted counties (while in tradables declines uniformly)
- Use the importance of non-tradable sector in indebted metopolitan areas to predict what cities suffer more from the crisis

First stage for entire population

Table: First Stage: Labor demand shock

	(1) Wages	(2) Wages	(3) Unemployment	(4) Unemployment	(5) Employment	(6) Employmen
VARIABLES	OLS	OLS	ÓLŚ	ÓLŚ	OLS	OLS
Debt to income x Post	-0.0174*** (0.00374)		0.0120*** (0.00247)		-0.0101*** (0.00290)	
Debt to income x Share non-trade x Post	, ,	-0.0726*** (0.0122)	, ,	0.0453*** (0.00917)	,	-0.0400*** (0.00980)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes

Notes: Robust standard errors reported. *** p<0.01, ** p<0.05, * p<0.1.

Event type graph

Net in-migration rates

Table: The migration response to the crisis: (net) In-migration rates

	(1) Net migration	(2) Net migration	(3) Net migration	(4) Net migration	(5) Net migration	(6) Net migration
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2
(log) Weekly Wages	0.188** (0.0843)	0.205*** (0.0640)				
Unemployment rate	, ,	, ,	-0.273*** (0.0990)	-0.328*** (0.0822)		
Employment rate			,	,	0.325*** (0.116)	0.371*** (0.0936)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66

Notes: Robust standard errors reported. *** p<0.01, ** p<0.05, * p<0.1.

Table: The migration response to the crisis: separating in- and out-migration

		Panel A:	In-migration	rates		
VARIABLES	(1) In migration IV1	(2) In migration IV2	(3) In migration IV1	(4) In migration IV2	(5) In migration IV1	(6) In migration IV2
(log) Weekly Wages	0.217*** (0.0593)	0.221*** (0.0465)				
Unemployment rate	(* * * * * * * * * * * * * * * * * * *	()	-0.315*** (0.0612)	-0.354*** (0.0563)		
Employment rate			(0.0012)	(0.0505)	0.374*** (0.0750)	0.401*** (0.0668)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66
		Panel B: (Out-migration	rates		
	(1) Out migration	(2) Out migration	(3) Out migration	(4) Out migration	(5) Out migration	(6) Out migration
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2
(log) Weekly Wages	0.0461 (0.0443)	0.0293 (0.0298)				
Unemployment rate			-0.0669 (0.0674)	-0.0469 (0.0498)		
Employment rate			(5.55.1)	(4.4.100)	0.0794 (0.0811)	0.0531 (0.0568)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66

Notes: Robust standard errors reported. *** p<0.01, ** p<0.05, * p<0.1.

Summary of main result

Result

A 1% decrease in wage leads to a a decrease of the in-migration rates by .2pp

Sensitivity of the results:

- Excluding the immigrant workers from the computation of migration rates
- 2 Separating high and low skilled workers Table
- 3 Both natives and immigrant low skilled workers (Table), (Explaining (Cadena and Kovak, 2016)
- 4 Stronger results for younger workers Table
- 5 Some (very interesting) heterogeneity by home-ownership status Tables

We have established a fact:

 Internal migration helped mitigate local shocks during the Great Recession, mainly through changes in in-migration rates
 Explanation of Mian et al. (2013)

Two questions to move forward:

- How prevalent this asymmetry is?
- 2 How important is internal migration?

How prevalent the asymmetry is?

What I propose in this paper:

- Decompose the population growth rates of a cohort into in- and out- migrations rates
- Using various geographies and time periods show that:

Most of the variation in population growth rates is associated with variation in in-migration rates

Decomposing population growth rates

The population growth rate is in-migration minus out-migration:

$$\frac{N_{m,t} - N_{m,t-1}}{N_{m,t-1}} = \frac{I_{m,t}}{N_{m,t-1}} - \frac{O_{m,t}}{N_{m,t-1}}$$
(4)

where $N_{m,t}$ refers to the cohort of workers that at time t are in metropolitan area m.

Regressions:

$$\frac{I_{m,t}}{N_{m,t-1}} = \alpha_1 + \beta_1 \frac{N_{m,t} - N_{m,t-1}}{N_{m,t-1}} + (+\delta_m + \delta_t) + \varepsilon_{m,t}$$
 (5)

$$\frac{O_{m,t}}{N_{m,t-1}} = \alpha_2 - \beta_2 \frac{N_{m,t} - N_{m,t-1}}{N_{m,t-1}} + (+\delta_m + \delta_t) + \epsilon_{m,t}$$
 (6)

Then, always $\beta_1 + \beta_2 = 1$, so:

- β_1 is then the share of the variation explained by the variation in in-migration rates
- lacktriangle eta_2 is the share explained by the variation in out-migration

Data source: Census and CP3 Summary Statistics

Table: In- migration, out-migration and population growth

	(1)	(2)	(3)	(4)	(5)	(6)
	In-migration	Out-migration	In-migration	Out-migration	In-migration	Out-migration
	rate	rate	rate	rate	rate	rate
Population growth rate	1.099***	0.0985*	0.861***	-0.139**	0.829***	-0.171***
	(0.0542)	(0.0542)	(0.0617)	(0.0617)	(0.0432)	(0.0432)
Observations	444	444	444	444	444	444
R-squared	0.739	0.022	0.975	0.905	0.986	0.946
	Pan	el B: Census o		vel variation		
	(1)	(2)	(3)	(4)	(5)	(6)
	In-migration	Out-migration	In-migration	Out-migration	In-migration	Out-migration
	rate	rate	rate	rate	rate	rate
Population growth rate	1.044***	0.0440	0.857***	-0.143*	0.726***	-0.274***
	(0.0722)	(0.0722)	(0.0746)	(0.0746)	(0.0634)	(0.0634)
Observations	204	204	204	204	204	204
R-squared	0.671	0.004	0.964	0.891	0.980	0.939
	P	anel C: CPS o	lata, regional	variation		
	(1)	(2)	(3)	(4)	(5)	(6)
	In-migration	Out-migration	In-migration	Out-migration	In-migration	Out-migration
	rate	rate	rate	rate	rate	rate
Population growth rate	1.464***	0.464***	0.820***	-0.180	0.685***	-0.315***
p 610Mtm 10tc	(0.154)	(0.154)	(0.211)	(0.211)	(0.0863)	(0.0863)
Observations	270	270	270	270	270	270
R-squared	0.340	0.049	0.476	0.246	0.925	0.892

Notes: Robust standard errors reported. *** p < 0.01, ** p < 0.05, * p < 0.1. The subtraction of every two columns needs to add up to 1.

yes

nο

yes

yes

yes

yes

yes

Geography FEs

Time FEs

no

nο

no

Summary of results until now

Not only:

In-migration is more responsive than out-migration during the Great Recession

But also:

- In-migration differences seem to explain much more of the variance in population growth
- City/regional decline: not attracting people instead of population leaving

But, how fast and how important as an insurance mechanism is this?

Outline of the talk

- Introduction
- Stylized facts:
 - The population response during the Great Recession
 - 2 Population growth and internal migration
- Model
 - Basic Setup
 - Mobility, propagation of local shocks and welfare
- The economic importance of internal migration
 - Model Calibration
 - 2 The Great Recession shock and the role of internal migration
 - Welfare evaluation
- Conclusion

Jump to Graphs of the calibrated model Jump to Conclusion

Building blocks of the model

Key assumptions of the model:

- 1 Local labor demand in each location is downward sloping (at least in the short-run)
- 2 Internal migration responds to local labor market conditions

Standard pieces of the Rosen (1974) - Roback (1982) model:

- The model has M regions
- There is a single final consumption good that is freely traded across regions
- Two factors of production: Land and Labor
- Location decision induces dynamics:
 - Workers live for infinitely many periods
 - Workers decide where to live in the following period given current and future local conditions

I will study what happens when:

Unexpected permanent shocks occur

Timing

The timing of the model is the following:

- ① At the beginning of each period an unexpected permanent shock can happen in a location
- Q Given the current distribution of workers across locations:
 - Firms maximize profits
 - Wages are determined
- 3 Given the wages in the economy, workers decide where to live in the following period

Key features for the model

- Congestion forces stronger than agglomeration forces
 - Attained through competition in the labor market with a fixed factor
 - Needed for existence and uniqueness of equilibrium
- 2 Dynamic location choice model that is:
 - Simple enough to study general equilibrium
 - Realistic enough to study dynamics and welfare

Labor Market

Perfectly competitive labor market:

$$\ln w_m = \ln(1 - \theta_m) + \ln B_m + \frac{1}{\sigma} \ln Q_m - \frac{1}{\sigma} \ln N_m \tag{7}$$

The key feature that I need is:

- Short-run downward sloping demand curve
- We can easily incorporate search frictions in this framework

Search frictions extension

• We can also incorporate more realistic models of internal trade

Location Choice

The indirect utility of the workers living in m and considering to move to m':

$$v_{t,m,m'}^i = \ln V_{t,m'} + \epsilon_{t,m,m'}^i = \ln A_{m'} + \ln w_{t,m'} + \beta \mathsf{E}_t \{ \ln V_{t+1,m'} \} + \epsilon_{t,m,m'}^i$$

Thus, workers maximize:

$$\max_{m' \in M} \{ \ln V_{t,m'} + \epsilon_{t,m,m'}^i \}$$

So, given the realization of $\epsilon_{m,m'}$, each individual chooses location.

We can use distribution of the idiosyncratic taste parameter to obtain probabilities of movement:

$$p_{t,m,m'}^{i} = p_{m,m'}(V_{t,1}, V_{t,2}, ..., V_{t,M})$$
(8)

By the law of large numbers we obtain the flow of people between m and m':

$$P_{t,m,m'} = p_{m,m'}(V_{t,1}, V_{t,2}, ..., V_{t,M}) * N_{t,m}$$
(9)

Notes:

- Notation A for amenities and w for wages.
- Easy to incorporate housing prices and other agglomeration or congestion forces.

Equilibrium

Short-run:

Definition

A short-run equilibrium is defined by the following decisions:

- Given $\{\theta_m, B_m, K_m, \sigma, w_m, r_m\}_{m \in M}$ firms maximize profits.
- Labor and land markets clear in each $m \in M$ so that $\{w_m, r_m\}$ is determined.

Long-run:

Definition

Given $\{\theta_m, B_m, K_m, \sigma, A_m\}_{m \in M}$, a long-run equilibrium is defined as a short-run equilibrium with a stable distribution of workers across space, i.e. with $N_{t+1,m} = N_{t,m}$ for all $m \in M$.

Population flows when ϵ is nested logit

When $\varepsilon_{m,m'}$ is nested logit, then the flows are:

$$P_{t,m,m'} = N_{t,m} \eta_{t,m} \frac{V_{t,m'}^{1/\lambda}}{\sum_{j \in M} V_{t,j}^{1/\lambda}}$$
 (10)

where

$$\eta_{t,m} = rac{\eta V_t^{1/\gamma}}{(1-\eta) V_{t,m}^{1/\gamma} + \eta V_t^{1/\gamma}}$$

and

$$\ln V_t = \lambda \ln \sum_{j \in M} V_{t,j}^{1/\lambda}$$

where V_t is the aggregate value in the economy and $\lambda < \gamma$.

Limiting cases

When $\frac{1}{\gamma} \to \frac{1}{\lambda}$:

- The home location stops having a special role
- As the number of locations increase, everyone relocates each period

When $\frac{1}{\gamma} \to 0$:

- Then $\eta_{t,m} o \eta$, so an (almost) constant fraction relocates
- ullet η helps to obtain realistic equilibrium migration rates: Mapping η to Fixed Costs of moving

Model

Solving the model

We can easily compute:

$$E_t(\ln V_{t+1,m'}) = \gamma \ln[(1-\eta)V_{t+1,m'}^{1/\gamma} + \eta V_{t+1}^{1/\gamma}]$$

Using this we can express the value of each location as:

$$\ln V_{t,m'} = \ln A_{m'} + \ln w_{t,m'} + \beta \gamma (\ln[(1-\eta)V_{t+1,m'}^{1/\gamma} + \eta V_{t+1}^{1/\gamma}])$$
 (11)

which iterating forward can be written as:

$$\ln V_{t,m'} = \frac{\beta}{1-\beta} \gamma \ln(1-\eta) + \frac{1}{1-\beta} \ln A_{m'} + \sum_{k=0}^{\infty} \beta^k \ln w_{t+k,m'} + \sum_{k=0}^{\infty} \beta^k \ln \nu_{t+k,m'}$$
 (12)

In and out-migration

Proposition

If $\epsilon^i_{m,m'}$ are i.i.d. and drawn from a nested logit distribution with shape parameters λ and γ then, in the environment defined by the model, we have that:

Corollary

If $\epsilon^i_{m,m'}$ are i.i.d. and drawn from a nested logit distribution with shape parameters λ and γ then, in the environment defined by the model, we have that:

- $\frac{\partial (I_m/N_m)}{\partial \ln w_m} \approx \frac{1}{1-\beta_m} \frac{1}{\lambda} \frac{I_m}{N_m}$
- $\frac{\partial (O_m/N_m)}{\partial \ln w_m} \approx -\frac{1}{1-\beta} \frac{1}{2} (1-\eta_m) \frac{O_m}{N_m}$

And:

$$\frac{\partial \ln N_m'}{\partial \ln w_m} \approx \frac{1}{1-\beta_m} \frac{1}{\lambda} \frac{I_m}{N_m'} - \frac{1}{1-\beta_m} \frac{1}{\gamma} (1-\eta_m) \frac{O_m}{N_m'}$$

The propagation of a local shock

A shock in one location:

- Reduces wages in that location
- Fewer workers are attracted to that location
- These workers are a labor supply shock in non-affected locations
- 4 Dynamics: Unless we are in the extreme case $1/\gamma=1/\lambda$, some "stickiness"

Very simple dynamics:

$$N_{t+1,m'} = \left(\sum_{j} P_{t,j,m'}\right) = \widetilde{\eta}_{t} \frac{V_{t,m'}^{1/\lambda}}{V_{t}^{1/\lambda}} N_{t} + (1 - \eta_{m,t}) N_{t,m'}$$
(13)

Where $\widetilde{\eta_t} = \sum_j \eta_{j,t} \omega_{t,j}$ and $\omega_{t,j} = \frac{\mathit{N}_{t,j}}{\mathit{N}_t}$

Steady state $(N_{t+1,m} = N_{t,m})$

Allocation of people across space:

$$N_m = \frac{\tilde{\eta}}{\eta_m} \frac{V_m^{1/\lambda}}{V^{1/\lambda}} N \tag{14}$$

Welfare evaluation:

$$\Delta \ln V_m \approx \lambda \Delta \ln N_m + \Delta \ln V \tag{15}$$

Relative welfare across locations:

$$\Delta \ln V_m - \Delta \ln V_{m'} \approx \lambda (\Delta \ln N_m - \Delta \ln N_{m'})$$
 (16)

Note that all crucially depend on λ , which I essentially estimated already!

Model Discussion

In the model:

- Positive bilateral flows across any locations
- Labor relocation as a response to a local negative shock can be a consequence of:
 - Changes in in-migration rates
 - Changes in out-migration rates
 - A combination of the two
- If short-run labor demand is downward sloping:
 - Internal relocation spreads local shocks across the territory
 - Alternatively, other congestion forces like housing could be the source of spillovers
- The discrete choice part models population flows and not final population distribution
- 5 Long-run welfare is easy to compute

Outline of the talk

- Introduction
- Stylized facts:
 - The population response during the Great Recession
 - 2 Population growth and internal migration
- Model
 - Basic Setup
 - Mobility, propagation of local shocks and welfare
- The economic importance of internal migration
 - Model Calibration
 - 2 The Great Recession shock and the role of internal migration
 - Welfare evaluation
- Conclusion

Model Estimation/Calibration: Key parameters

- Local labor demand elasticity:
 - Monras (2015a) using immigration shocks estimates an inverse local labor demand elasticity equal to -.7 for low skilled.
 - Monras (2015b) using minimum wage increases estimates a local labor demand elasticity equal to -1.3 for low skilled.
 - Borjas and Monras (2016) obtain a labor demand elasticity of around -1.
 - In this paper, robustness to many different local labor demand elasticities estimates, but main results use unit elasticity.
- Sensitivity of internal migration to local shocks:
 - Out-migration rates do not seem to respond: $\frac{1}{\gamma} = 0$ (So, limiting case of the model discussed before)
 - In-migration rates respond: $\partial (\frac{I_m}{N_m})/\partial \ln w_m \approx 0.2$, and

$$\frac{1}{\hat{\lambda}} = \frac{0.2}{0.05} (1 - \hat{\beta}(1 - \hat{\eta})) = \frac{1}{2.56}$$

When $\frac{1}{\gamma}=0$, then $(1-\beta_m)=(1-\hat{\beta}(1-\hat{\eta}))$, assuming $\beta=0.95$

Rest of the calibration

- ① $1- heta_m$ is the share of output devoted to labor: $\hat{ heta}_m=1-rac{w_mN_m}{Q_m}$
- ② Local Labor Demand Shifter: $\hat{TFP}_m = B_m K_m^{ heta_m} = Q_m / N_m^{1-\hat{ heta}_m}$
- **3** Calibrate η to match equilibrium migration rates
- lacktriangle Calibrate eta to .95 (Kennan and Walker, 2011)
- 4 Amenities and initial conditions are calibrated assuming long-run spatial equilibrium in 2005.
- Calibration of the shock:
 - Change in local demand for labor consistent with the predicted change in wages between 2005 - 2008 given Aggregate Demand measure introduced before.

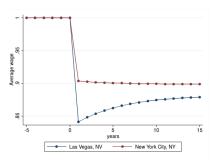
Results from the calibration

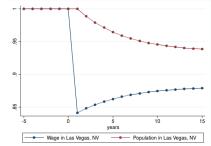
The model boils down to a dynamic system of 2 state variables per location and 2 equations:

$$N_{t+1,m} = \eta \frac{V_{t,m}^{1/\lambda}}{V_t^{1/\lambda}} N_t + (1-\eta) N_{t,m}$$
 (17)

$$V_{t+1,m} = (A_m w_{t,m})^{\frac{-1}{\beta(1-\eta)}} V_{t,m}^{\frac{-1}{\beta(1-\eta)}} V_{t+1}^{\frac{-\eta}{(1-\eta)}}$$
(18)

That only depends on the calibrated/estimated parameters.

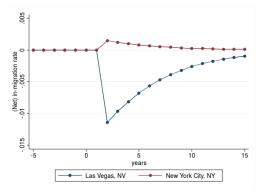

Note: V_{t+1} can be recovered from its definition.


With the calibrated model we can study:

- Speed of convergence to new spatial equilibrium
- The evolution of welfare across space

Wages and population

Figure: The evolution of the wages and population in the model



Notes: This graph shows the evolution of wages and population in a number of cities according to the model calibrated to match the implied productivity loss during the Great Recession.

Alternative labor demand elasticities

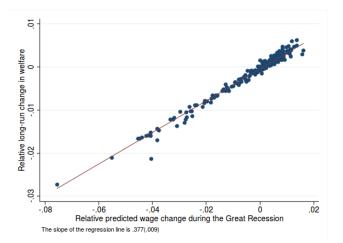
In-migration rates

Figure: The evolution of the in migration rate in the model

Notes: This graph shows the evolution of the in-migration rate in a number of cities according to the model calibrated to match the implied productivity loss during the Great Recession.

Internal migration and local insurance

A simple test:


$$\Delta^{2020-2005} \ln V_m = \alpha + \beta \Delta^{2010-2005} \ln w_m + \varepsilon_m$$

where $\Delta^{2010-2005}\ln w_m$ is the initial size of the shock predicted by the local aggregate demand decrease.

Note that

- If $\beta = 0$ then internal migration fully insures against local shocks
- If $\beta = 1$ the initial shock transfer 1 to 1 to long run welfare
- ullet Thus, 1-eta measures how much of the initial shock dissipates thanks to internal migration

Change in long-run welfare following the Great Recession

Conclusion: At least 60 percent of initial shock potentially absorbed through internal migration

Conclusion

How does internal migration respond to local shocks?

- In-migration rates decline in hard hit locations during the Great Recession
- Out-migration rates do not respond on impact
- Population growth rates mainly explained by variation in in-migration rates

How much labor relocation helps?

Introduce a parsimonious dynamic spatial equilibrium model to show that

- Within 10 years most of the local shocks during the Great Recession dissipate
- At least 60 percent of the initial incidence of the shock is dissipated through internal migration

Appendix

Data

Standard microlevel labor market data:

- American Community Survey/Census/Current Population survey to compute:
 - Yearly average wages and unemployment rates at the metropolitan area
 - In- and out-migration rates
- Census data to compute:
 - The importance of the construction sector in 2000
 - The importance of the "non-tradable sector" in 2000

BEA data to compute per capita GDP at the metropolitan area

Mian et al. (2013) data to compute:

The debt to income ratio at the metropolitan area

Main facts to keep in mind:

- Labor market outcomes deteriorated during the Great Recession, variance across localities
- Internal migration is around 5 percent of the population
- It decreases during crisis (Saks and Wozniak, 2011)

Back to In- out- migration rates | Back to Population growth rates

Table: Summary statistics, period 2005-2010

Variable	Mean	Std. Dev.	Min.	Max.
Debt to Income, 2006	1.977	0.595	0.865	3.784
Share of emp. in non-tradable sectors, 2000	0.221	0.032	0.163	0.432
Non-trade emp x Debt to Income	0.442	0.172	0.201	1.236
Yea	rs 2005-2006			
Total population	2,150,467	2,604,588	51,253	10,028,307
Sample size	4087.606	3921.324	124	15235
Average weekly wages	377.48	51.447	238.739	605.967
Unemployment rate	0.049	0.013	0.004	0.118
Employment rate	0.845	0.028	0.697	0.931
In-migration rate	0.054	0.019	0.006	0.126
Out-migration rate	0.053	0.019	0.005	0.259
Net in-migration rate	0.001	0.017	-0.2	0.093
Yea	rs 2007-2010			
Total population	2,233,383	2,679,241	47,997	10,176,648
Sample size	4051.202	3975.764	91	15362
Average weekly wages	357.875	51.535	209.414	580.365
Unemployment rate	0.071	0.029	0.008	0.172
Employment rate	0.834	0.039	0.635	0.947
In-migration rate	0.048	0.016	0	0.15
Out-migration rate	0.047	0.015	0.004	0.159
Net in-migration rate	0	0.009	-0.063	0.09

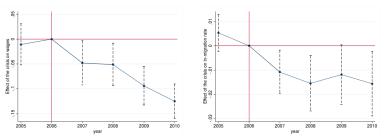


Table: Summary statistics: migration rates

Variable	Mean	Std. Dev.	Min.	Max.						
Metropolitan area migration										
	P	ooled Censuses	1980-200	0						
In-migration rate	0.177	0.083	0.065	0.618						
Out-migration rate	0.175	0.043	0.049	0.433						
	2000 Census									
In-migration rate	0.168	0.073	0.079	0.618						
Out-migration rate	0.168	0.039	0.049	0.395						
	1990 Census									
In-migration rate	0.187	0.09	0.069	0.466						
Out-migration rate	0.183	0.045	0.113	0.433						
	1980 Census									
In-migration rate	0.177	0.099	0.065	0.578						
Out-migration rate	0.182	0.049	0.116	0.426						
State migration										
	Pooled Censuses 1980-2000									
In-migration rate	0.114	0.053	0.046	0.645						
Out-migration rate	0.11	0.03	0.074	0.419						
		2000 Cer	nsus							
In-migration rate	0.105	0.046	0.056	0.335						
Out-migration rate	0.104	0.026	0.074	0.345						
		1990 Cer	nsus							
In-migration rate	0.114	0.052	0.055	0.385						
Out-migration rate	0.113	0.033	0.077	0.321						
		1980 Cer	nsus							
In-migration rate	0.118	0.06	0.046	0.437						
Out-migration rate	0.116	0.031	0.081	0.339						
	Regional	migration								
		Pooled CPS 1	982-2013							
In-migration rate	0.025	0.013	0.007	0.077						
Out-migration rate	0.025	0.011	0.009	0.071						

Figure: Evolution of wages and in-migration rates during the Great Recession

Notes: This figure reports the estimate of the interaction of year dummies with the Deb to Income x Share of employment in non-tradable sectors, controlling for metarea and year fixed effects. 95 percent confidence intervals are reported.

Back to First Stage Back to Second Stage

In-migration rates of native workers

Table: The migration response to the crisis: natives

Panel A: In-migration rates									
	(1)	(2)	(3)	(4)	(5)	(6)			
	In migration	In migration	In migration	In migration	In migration	In migration			
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2			
(log) Weekly Wages	0.166*** (0.0525)	0.183*** (0.0426)							
Unemployment rate	,	, ,	-0.233*** (0.0590)	-0.293*** (0.0560)					
Employment rate					0.251*** (0.0631)	0.305*** (0.0591)			
Observations	1,260	1,260	1,260	1,260	1,260	1,260			
vear FE	ves	ves	ves	ves	ves	ves			

yes

62 74

yes

54.81

ves

39.10

ves

37.71

Notes: Robust standard errors reported. *** p<0.01, ** p<0.05, * p<0.1.

ves

30.50

ves

45 34

metarea FE

widstat

In-migration rates of young workers

Table: The migration response to the crisis: workers less than 35 years old

	Pa	nel A: In	-migrati	on rates		
VARIABLES	(1) In migration IV1	(2) In migration IV2	(3) In migration IV1	(4) In migration IV2	(5) In migration IV1	(6) In migration IV2
(log) Weekly Wages	0.315*** (0.0869)	0.306***				
Unemployment rate	(,	(,	-0.458***	-0.491***		
Employment rate			(0.0906)	(0.0802)	0.543*** (0.113)	0.556*** (0.0947)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66
	Pan	iel Β: Οι	ıt-migrat	tion rate	S	
VARIABLES	(1) Out migration IV1	(2) Out migration IV2	(3) Out migration IV1	(4) Out migration IV2	(5) Out migration IV1	(6) Out migration IV2
(log) Weekly Wages	0.0417 (0.0655)	0.0111 (0.0466)				
Unemployment rate	()	(******)	-0.0606 (0.0983)	-0.0178 (0.0753)		
Employment rate			(()	0.0719 (0.118)	0.0202 (0.0855)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66

Notes: Robust standard errors reported. *** p<0.01, ** p<0.05, * p<0.1.

In-migration rates of older workers

Table: The migration response to the crisis: workers less than 35 years old

VARIABLES In migration In migration IV2 In migratio	3) (4) gration In migration V1 IV2	(5) In migration	(6)
Unemployment rate		IV1	In migration IV2
Employment rate Observations 1,260 1,260 1, year FE yes yes yes netarea FE yes			
Component rate	97*** -0.235***		
year FE yes yes metarea FE yes yes widstat 30.50 37.71 6t Pamel B: Out-m (1) (2) (3) (4) 0ut migration Out migration Out migration Out migration Out migration Nut V/V Nut	0560) (0.0515)	0.234*** (0.0671)	0.266*** (0.0602)
metarea FE	260 1,260	1,260	1,260
widstat 30.50 37.71 65 Pan=IB B: Out-m VARIABLES Out migration of IVI Out migration of IVI <t< td=""><td>es yes</td><td>yes</td><td>yes</td></t<>	es yes	yes	yes
Panel B: Out-m (1)	es yes	yes	yes
(1) (2) (3) (2) (4) (2) (4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	.08 63.43	31.18	40.66
(1) (2) (3) (2) (4) (2) (4) (2) (4) (4) (4) (4) (4) (4) (4) (4) (4) (4	gration rates		
\text{VARIABLES} \text{IV\$\frac{1}{2}} \text{IV\$\frac{1}{2}} \text{IV} \text{V2} \text{IV} \text{(log) Weekly Wages} \ 0.0481 \ 0.0379 \ (0.0278) \text{(0.0278)} \text{Unemployment rate} \text{-0.06} \text{(0.0278)}		(5)	(6)
(0.0398) (0.0275) Unemployment rate (0.0! Employment rate		Out migration IV1	Out migration IV2
(0.09 Employment rate			
Employment rate			
Observations 1,260 1,260 1,2	(0.0460)	0.0830 (0.0716)	0.0688 (0.0523)
		1,260	1,260
year FE yes yes ye	50 1,260	yes	yes
metarea FE yes yes ye widetat 30.50 37.71 65			

Migration rates of renters

Table: The migration response to the crisis: renters

Panel	A:	In-migration	rates

	(1)	(2)	(3)	(4)	(5)	(6)				
	In migration			In migration	In migration	In migration				
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2				
(log) Weekly Wages	0.260***	0.301***								
(log) weekly wages	(0.0865)	(0.0723)								
Unemployment rate	(0.0003)	(0.0123)	-0.378***	-0 482***						
Onemployment rate			(0.114)	(0.104)						
Employment rate			(0.221)	(0.104)	0.449***	0.546***				
					(0.134)	(0.119)				
					(0.20.)	()				
Observations	1,260	1,260	1,260	1,260	1,260	1,260				
year FE	yes	yes	yes	yes	yes	yes				
metarea FE	yes	yes	yes	yes	yes	yes				
widstat	30.50	37.71	65.08	63.43	31.18	40.66				
Panel B: Out-migration rates										
	(1)	(2)	(3)	(4)	(5)	(6)				
	Out migration									
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2				
(log) Weekly Wages	-0.160*	-0.0804								
(log) weekly wages	(0.0967)	(0.0648)								
Unemployment rate	(0.000.)	(0.00.0)	0.232*	0.129						
			(0.128)	(0.0967)						
Employment rate					-0.276*	-0.146				
					(0.155)	(0.110)				
Observations	1.260	1.260	1.260	1.260	1.260	1.260				
vear FE	yes	yes	yes	yes	yes	yes				
metarea FE	yes	yes	yes	yes	yes	yes				
widstat	30.50	37.71	65.08	63.43	31.18	40.66				

Notes: Robust standard errors reported. *** p<0.01, ** p<0.05, * p<0.1.

Migration rates of homeowners

Table: The migration response to the crisis: homeowners free of mortgage

	Pa	nel A: Ir	n-migrati	on rates		
VARIABLES	(1) In migration IV1	(2) In migration IV2	(3) In migration IV1	(4) In migration IV2	(5) In migration IV1	(6) In migration IV2
(log) Weekly Wages	0.162** (0.0743)	0.171*** (0.0570)				
Unemployment rate			-0.236*** (0.0895)	-0.274*** (0.0791)		
Employment rate			(*****)	(,	0.280** (0.111)	0.310*** (0.0932)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66
	Pan	iel B: Oi	ut-migrat	tion rate	S	
VARIABLES	(1) Out migration IV1	(2) Out migration IV2	(3) Out migration IV1	(4) Out migration IV2	(5) Out migration IV1	(6) Out migration IV2
(log) Weekly Wages	0.280***	0.208***				
Unemployment rate	(0.0040)	(0.0031)	-0.406*** (0.108)	-0.333*** (0.0894)		
Employment rate			(= 1-0)	()	0.482*** (0.143)	0.377*** (0.107)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes 20 E0	yes 27.71	yes 66.00	yes 62.42	yes 21.10	yes 40.66

Migration rates of homeowners

Table: The migration response to the crisis: homeowners with mortgage

	(1)	(2)	(3)	(4)	(5)	(6)
VARIABI ES	In migration IV1	In migration IV2	In migration IV1	In migration IV2	In migration IV1	In migration
VARIABLES	IVI	IV2	IVI	IV2	IVI	IV2
(log) Weekly Wages	0.198*** (0.0642)	0.176*** (0.0466)				
Unemployment rate			-0.287*** (0.0670)	-0.281*** (0.0586)		
Employment rate			, ,	, ,	0.341***	0.319***
					(0.0829)	(0.0679)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	30.50	37.71	65.08	63.43	31.18	40.66
	Pan	iel Β: Οι	ut-migrat	tion rate	S	
	(1)	(2)	(3)	(4)	(5)	(6)
VARIABLES	Out migration IV1	Out migration IV2	Out migration IV1	Out migration IV2	Out migration IV1	Out migratio IV2
(log) Weekly Wages	0.149*** (0.0482)	0.0725**				
Unemployment rate	(,	(,	-0.217*** (0.0722)	-0.116** (0.0570)		
Employment rate			,	,	0.258*** (0.0931)	0.132** (0.0658)
Observations	1.260	1.260	1.260	1.260	1.260	1.260
Observations year FE	1,260 yes	1,260 yes	1,260 yes	1,260 yes	1,260 yes	1,260 yes

Out-migration rates of homeowners

Table: The migration response to the crisis: homeowners in recourse States

Panel A: Out-migration rates, homeowners with mortgage payments

	(1)	(2)	(3)	(4)	(5)	(6)
	Out migration	Out migration	Out migration	Out migration	Out migration	Out migration
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2
(log) Weekly Wages	0.198** (0.0975)	0.0480 (0.0445)				
Unemployment rate			-0.240**	-0.0725		
			(0.0952)	(0.0648)		
Employment rate					0.281**	0.0823
					(0.129)	(0.0737)
Observations	828	828	828	828	828	828
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	11.41	19.02	44.63	27.92	18.83	22.40

Panel B: Out-migration rates, homeowners free of mortgage payments

	(1)	(2)	(3)	(4)	(5)	(6)
	Out migration					
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2
(log) Weekly Wages	0.156	0.0947				
(log) Weekly Wages	(0.107)	(0.0659)				
Unemployment rate			-0.189*	-0.143*		
			(0.109)	(0.0869)		
Employment rate					0.221	0.162*
					(0.138)	(0.0984)
Observations	828	828	828	828	828	828
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	11.41	19.02	44.63	27.92	18.83	22.40

Out-migration rates of homeowners

Table: The migration response to the crisis: homeowners in non-recourse States

Panel A: Out-migration rates, homeowners with mortgage payments

VARIABLES	ut migration	Out migration				
(log) Weekly Wages Unemployment rate			Out migration	Out migration	Out migration	Out migration
Unemployment rate	IV1	IV2	IV1	IV2	IV1	IV2
	0.138*** (0.0461)	0.123*** (0.0447)				
Employment rate			-0.243*** (0.0907)	-0.223** (0.0920)		
			, ,	, ,	0.270*** (0.104)	0.237** (0.0998)
Observations	432	432	432	432	432	432
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	27.19	28.31	46.94	42.81	23.94	23.71

Panel B: Out-migration rates, homeowners free of mortgage payments

	(1)	(2)	(3)	(4)	(5)	(6)	
	Out migration						
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2	
(log) Weekly Wages	0.279***	0.290***					
(0)	(0.0825)	(0.0827)					
Unemployment rate	((-0.492***	-0.527***			
			(0.144)	(0.149)			
Employment rate			. ,	,	0.547***	0.560***	
					(0.167)	(0.170)	
Observations	432	432	432	432	432	432	
year FE	yes	yes	yes	yes	yes	yes	
metarea FE	yes	yes	yes	yes	yes	yes	
widstat	27.19	28.31	46.94	42.81	23.94	23.71	

In-migration rates of low-skilled workers

Table: The migration response to the crisis: low-skilled

Panel A: In-migration rates

	(1)	(2)	(3)	(4)	(5)	(6)
	In migration					
VARIABLES	IV1	IV2	IV1	IV2	IV1	IV2
(log) Weekly Wages	0.185***	0.189***				
(), , ,	(0.0482)	(0.0439)				
Unemployment rate	,	,	-0.256***	-0.257***		
			(0.0464)	(0.0419)		
Employment rate					0.301***	0.277***
					(0.0574)	(0.0462)
Observations	1,260	1,260	1,260	1,260	1,260	1,260
year FE	yes	yes	yes	yes	yes	yes
metarea FE	yes	yes	yes	yes	yes	yes
widstat	32.04	27.59	62.98	51.08	32.35	40.35

In-migration rates of high-skilled workers

Table: The migration response to the crisis: high-skilled

Panel A: In-migration rates							
	(1)	(2)	(3)	(4)	(5)	(6)	
VARIABLES	In migration IV1	In migration IV2	In migration IV1	In migration IV2	In migration IV1	In migration IV2	
(log) Weekly Wages	0.260**	0.286***					
Unemployment rate	, ,	,	-0.433*** (0.137)	-0.595*** (0.142)			
Employment rate			, ,	, ,	0.559*** (0.196)	0.845*** (0.259)	
Observations	1,260	1,260	1,260	1,260	1,260	1,260	
year FE	yes	yes	yes	yes	yes	yes	
metarea FE	yes	yes	yes	yes	yes	yes	
widstat	11.92	21.38	40.12	48.64	16.47	16.20	

Reviewing the results in Cadena and Kovak (2016)

In a very nice paper Cadena and Kovak (2016) show that:

- 1 Mexican low-skilled pop. decreases between 2006 and 2010 in negatively affected cities
- 2 Native low-skilled pop. stays more or less constant (or increases slightly)

Their result suggests that Mexicans grease the wheels of the US low skilled labor market

(Borjas, 2001)

However,

can we conclude from their evidence that low skilled natives did not respond to local shocks?

In-migration rates of native low-skilled workers

Table: The migration response to the crisis: native low-skilled

Panel A: In-migration rates							
VARIABLES	(1) In migration IV1	(2) In migration IV2	(3) In migration IV1	(4) In migration IV2	(5) In migration IV1	(6) In migration IV2	
(log) Weekly Wages	0.140*** (0.0430)	0.146*** (0.0391)					
Unemployment rate	,	, ,	-0.170*** (0.0413)	-0.186*** (0.0405)			
Employment rate			, ,	, ,	0.176*** (0.0418)	0.178*** (0.0380)	
Observations	1,260	1,260	1,260	1,260	1,260	1,260	
year FE	yes	yes	yes	yes	yes	yes	
metarea FE widstat	yes 32.04	yes 27.59	yes 62.58	yes 39.05	yes 54.29	yes 52.48	

Explaining Cadena and Kovak (2016)

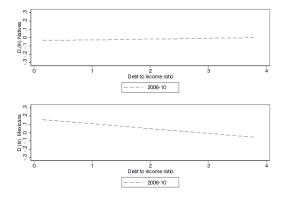
Cadena and Kovak (2016) run versions of the following between 2006 and 2010.

$$\Delta \ln \mathsf{Natives}_c = \alpha_1 + \beta_1 \mathsf{Economic\ Shock}_c + \epsilon_c$$

$$\Delta \ln \mathsf{Mexicans}_c = \alpha_2 + \beta_2 \mathsf{Economic\ Shock}_c + \varepsilon_c$$

where the the "Economic Shock" can be the change in employment levels, possibly instrumented by debt to income ratio at the metropolitan area c.

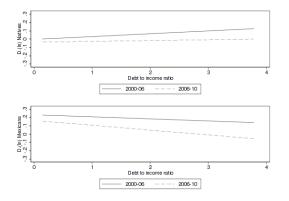
Their findings:


- $\beta_1 \approx 0$ and $\beta_2 < 0$
- They conclude that Mexicans respond to the local economic shocks, while native don't

What happens when we run the exact same regressions but between 2000 and 2006?

Explaining Cadena and Kovak (2016), their evidence

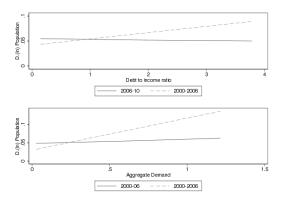
- No decline of native low skilled population in high shocked cities
- Decline of Mexican in high shocked cities



Notes: This graph shows the fitted values of the regression Δ In Natives $_c = \alpha_1 + \beta_1$ Debt to Income ratio $_c + \epsilon_c$ and Δ In Mex $_c = \alpha_2 + \beta_2$ Debt to Income ratio $_c + \epsilon_c$ between 2006-2010.

4 D > 4 D > 4 E > 4 E > E 900

Low skilled natives and Mexicans: Same change in trends


The change in population across cities between 2000 and 2006 is similar between natives and Mexican low skilled workers

Notes: This graph shows the fitted values of the regression $\Delta \ln \text{Natives}_c = \alpha_1 + \beta_1 \text{Debt to Income ratio}_c + \epsilon_c$ and $\Delta \ln \text{Mex}_c = \alpha_2 + \beta_2 \text{Debt to Income ratio}_c + \epsilon_c$ between 2006-2010 and between 2000 and 2006.

Change in population trends

Notes: This graph shows the fitted values of the regression $\Delta \ln \mathsf{Pop}_c = \alpha_1 + \beta_1 \mathsf{Debt}$ to Income ratio_c + ϵ_c and $\Delta \ln \mathsf{Pop}_c = \alpha_2 + \beta_2 \mathsf{Aggregate}$ Demand_c + ϵ_c between 2006-2010 and between 2000 and 2006.

Internal migration and city size

Table: Internal migration and city size

	(1)	(2)	(3)	(4)	(5)	(6)	(7)	(8)
	(ln) In	(In) In	(In) Out	(In) Out	(ln) In	(In) In	(In) Out	(In) Out
	migrants							
VARIABLES	OLS							
(In) Population	0.854***	0.919***	0.922***	0.908***	0.849***	0.891***	0.920***	0.878**
	(0.0406)	(0.0355)	(0.0182)	(0.0172)	(0.0391)	(0.0351)	(0.0174)	(0.0177
Observations	474	474	474	474	474	474	474	474
R-squared	0.821	0.732	0.931	0.805	0.859	0.818	0.964	0.929
Time FEs	no	no	no	no	yes	yes	yes	yes
Weights	yes	no	yes	no	yes	no	yes	no

Notes: Robust standard errors clustered at the metropolitan area reported. *** p < 0.01, ** p < 0.05, * p < 0.1. All the coefficients are significantly smaller than 1.

Beveridge curve, Job creation and Wage curve

• Equilibrium condition is that unemployment growth is 0:

$$s(1-u_c)=u_c^{\eta}v_c^{1-\eta}$$

So:

$$u_c = \frac{s}{s + \theta_c^{1+\eta}} \tag{19}$$

where $\theta_c = v_c/u_c$ is the labor market tightness.

2 The zero profit condition determines the job creation equation:

$$r_c - w_c - \frac{(i_c + s)r_c f}{\theta_c^{\eta}} = 0 \tag{20}$$

3 Nash bargaining between firms and workers (with weight β):

$$w_c = (1 - \beta)b_c + \beta r_c (1 + f\theta_c)$$
(21)

These 3 equations determine $\{u_c, \theta_c, w_c\}$ in each local labor market.

Importantly: The revenue flow per worker is given by $r_m = p_m(1 - \theta_m)B_mQ_m^{\frac{1}{\sigma}}L_c^{-\frac{1}{\sigma}}$

Back

Moving Costs

The flows implied by a model with moving costs can be written as:

$$P_{m,m'} = N_m * \frac{V_{m,m'}^{1/\lambda}}{\sum_{j \in M} V_{m,j}^{1/\lambda}}$$

where

$$\ln V_{m,m'} = \ln A_{m'} + \ln \omega_{m'} - \ln F_m = \ln V_{m'} - \ln F_m$$

Using this expression we obtain:

$$P_{m,m'} = N_m * \frac{(V_{m'}/F_m)^{1/\lambda}}{V_m^{1/\lambda} + \sum_{j \neq m'} (V_j/F_m)^{1/\lambda}}$$

We need to compare this expression to what we derived in the model:

$$P_{m,m'} = N_m * \frac{\eta V^{1/\gamma}}{(1-\eta)V_m^{1/\gamma} + \eta V^{1/\gamma}} \frac{V_{m'}^{1/\lambda}}{V^{1/\lambda}}$$

Moving Costs 2

For these expressions to represent the same flows we need them to be equal, so:

$$\frac{(V_{m'}/F_m)^{1/\lambda}}{V_m^{1/\lambda} + \sum_{j \neq m'} (V_j/F_m)^{1/\lambda}} = \frac{\eta V^{1/\gamma}}{(1-\eta)V_m^{1/\gamma} + \eta V^{1/\gamma}} \frac{V_{m'}^{1/\lambda}}{V^{1/\lambda}}$$

So we would need:

$$F_{m}^{1/\lambda} = \frac{\frac{(1-\eta)V_{m}^{1/\gamma} + \eta V^{1/\gamma}}{\eta V^{1/\gamma-1/\lambda}} + V_{m'}^{1/\lambda} - V^{1/\lambda}}{V_{m}^{1/\lambda}}$$

Note that if $1/\gamma = 0$ then:

$$F_m^{1/\lambda} = \frac{\frac{(1-\eta)}{\eta} V^{1/\lambda} + V_{m'}^{1/\lambda}}{V_m^{1/\lambda}} = \frac{(1-\eta)}{\eta} (V/V_m)^{1/\lambda} + (V_{m'}/V_m)^{1/\lambda}$$

Comments on fixed costs of moving

From the previous expressions we observe that:

- There is non 1 to 1 mapping
- This expression also highlights the high value of previous estimates of moving costs. We established that η is around 5 percent, and λ is around 2.56, and we can assume that $V_{m'}/V_m$ is roughly 1, for similarly sized cities. Then:

$$F_m^{1/2.56} = \frac{0.95}{0.05} (V/V_m)^{1/2.56} + (V_{m'}/V_m)^{1/2.56}$$

or

$$F_m pprox (rac{0.95}{0.05})^{2.56} (V/V_m) + 1 pprox 1878 * (V/V_m) + 1 pprox 1878 * M + 1$$

Back

Time	Wage convergence	Population convergence					
	$\sigma = 0.5$	i					
5 years	0.828	0.828					
10 years	0.991	0.991					
15 years	1.000	1.000					
	$\sigma = 0.7$						
5 years	0.700	0.700					
10 years	0.961	0.961					
15 years	0.995	0.995					
	$\sigma = 0.9$	ı					
5 years	0.607	0.608					
10 years	0.919	0.919					
15 years	0.984	0.984					
$\sigma = 1.1$							
5 years	0.540	0.541					
10 years	0.876	0.877					
15 years	0.967	0.967					
	$\sigma = 1.3$						
5 years	0.489	0.491					
10 years	0.836	0.837					
15 years	0.949	0.949					
	$\sigma = 1.5$						
5 years	0.450	0.452					
10 years	0.801	0.802					
15 years	0.930	0.930					
	$\sigma = 1.7$	t.					
5 years	0.420	0.421					
10 years	0.770	0.771					
15 years	0.911	0.912					

References

- Blanchard, O. and L. Katz, "Regional Evolutions," Brookings Papers on Economic Activity, 1992, pp. 1-75.
- Borjas, G., "Does Immigration Grease the Wheels of the Labor Market?," Brookings Papers on Economic Activity, 2001.
- and J. Monras, "The Labor Market Consequences of Refugee Supply Shocks," mimeo, 2016.
- Cadena, B. and B. Kovak, "Immigrants Equilibrate Local Labor Markets: Evidence from the Great Recession," *American Economic Journal: Applied Economics*, 2016.
- Glaeser, E. and J. Gyourko, "Urban Decline and Durable Housing," Journal of Political Economy, 2005, 113(2), 345-375.
- Hornbeck, R., "The Enduring Impact of the American Dust Bowl: Short- and Long-run Adjustments to Environmental Catastrophe," *American Economic Review*, 2012, 102(4), 1477–1507.
- Kennan, J. and J. Walker, "The Effect of Expected Income on Individual Migration Decisions," Econometrica, 2011, 79(1), 211–251.
- Mian, A., K. Rao, and A. Sufi, "Household Balance Sheets, Consumption, and the Economic Slump," Quarterly Jorunal of Economics. 2013.
- Monras, J., "Immigration and Wage Dynamics: Evidence from the Mexican Peso Crisis," IZA Discussion Paper No. 8924, 2015.
- _____, "Minimum Wages and Spatial Equilibrium: Theory and Evidence," IZA Discussion Paper No. 9460, 2015.
- Roback, J., "Wages, Rents, and the Quality of Life," Journal of Political Economy, 1982, 90(6), 1257-1278.
- Rosen, S., "Hedonic Prices and Implicit Markets: Product Differentiation in Pure Competition," *Journal of Political Economy*, 1974, 82, 34–55.
- Saks, R. and A. Wozniak, "Labor Reallocation over the Business Cycle: New Evidence from Internal Migration," Journal of Labor Economics, 2011, 29(4), 697–739.