Debt Sustainability in a Low Interest Rate World

Neil R. Mehrotra and Dmitriy Sergeyev

Federal Reserve Bank of New York and Bocconi University

The views expressed here are the views of the author and do not necessarily represent the views of the Federal Reserve Bank of New York or the Federal Reserve System

European Central Bank
December 19, 2019

Public Debt

OECD ECONOMIES

DEbT SERVICING COSTS

OECD ECONOMIES

Research Question and Approach:

Key tradeoff:

- Persistent $r<g$ allows for larger sustainable primary deficits
- With a large stock of public debt, interest rate reversals can impose sizable fiscal costs
- Weak growth has counteracting effects on debt dynamics

Approach:

- Empirical evidence on historical level and variability of $r-g$
- Utilize a continuous time model to study implications for debt servicing cost of "secular stagnation" scenarios

Preview of Findings

Empirical findings:

- Average cost of servicing the public debt is close to zero
- Substantial variability and reversion risk in $r-g$

Analytical findings:

- Possibility of stationary debt to GDP absent any fiscal response
- Slower productivity growth may improve debt sustainability
- Elevated risk premia carry ambiguous effects for debt dynamics
- Findings carry over to an environment with default

Outline for Presentation

1. Empirical facts
2. Case of no default
3. Case of default

Historical debt servicing cost

	17 Advanced Countries			United States	
	$1870-2013$	$1946-2013$		$1870-2013$	$1946-2013$
Net fiscal cost: $\mathrm{r}-(\mathrm{g}+\mathrm{n})$					
\quad 25th percentile	-2.64	-2.74		-2.15	-1.72
Median	0.08	-0.38		-0.16	-1.35
75th percentile	2.28	1.55		1.09	0.57
Fraction <0	49.3%	54.3%		55.2%	69.2%
Fraction $<-2 \%$	31.4%	32.6%		31.0%	23.1%
No. of observations	493	221		29	13

- Median cost of servicing the debt is close to zero for all economies
- Significant fraction of time with cost of servicing the debt very negative

Cost of servicing the US public debt

Outline for Presentation

1. Empirical facts

2. Case of no default
3. Case of default

Economic Environment

- Time: $t \geq 0$
- Goods: consumption
- Agents: representative household, fiscal authority
- Assets: risky capital, government bonds
- Uncertainty: endowment, fiscal policy

$$
d Y_{t}=g Y_{t} d t+\sigma_{y} Y_{t} d Z_{t}^{y}
$$

Households

ObjECTIVE AND CONSTRAINTS

$$
\begin{aligned}
& \max _{c_{t}, a_{t}, x_{t}, b_{t}, s_{t}} W_{t}=V_{t}+\mathbb{E}_{t} \int_{t}^{\infty} \pi_{t, s} Y_{s} u\left(\frac{b_{s}}{Y_{s}}\right) d s \\
& V_{t}=\mathbb{E}_{t} \int_{t}^{\infty} f\left(c_{s}, V_{s}\right) d s \\
& f\left(c_{s}, V_{s}\right)= \frac{\left((1-\gamma) V_{s}\right)^{\frac{\theta-\gamma}{1-\gamma}}}{1-\theta}\left[c_{s}^{1-\theta}-(\rho-n)\left((1-\gamma) V_{s}\right)^{\frac{1-\theta}{1-\gamma}}\right] \\
& \text { s.t.: } d a_{t}=\left(r_{t}^{s} s_{t}+r_{t} b_{t}-c_{t}-T_{t}-a_{t} n\right) d t+a_{t} x_{t} d r_{t}^{x} \\
& a_{t}=s_{t}+b_{t}+x_{t} a_{t}
\end{aligned}
$$

- A representative household with members of initial size N_{0} with $d N_{t}=n d t$ for $t>0$
- s_{t} are safe assets with no liquidity yield, while b_{t} are government bonds with a liquidity yield

Fiscal Authority and Debt Dynamics

Government budget constraint and primary deficit:

$$
\begin{aligned}
d B_{t} & =\left(r_{t} B_{t}+D_{t}\right) d t+\sigma_{B} B_{t} d Z_{t}^{B} \\
\frac{D_{t}}{N_{t} Y_{t}} & =\frac{B_{t}}{N_{t} Y_{t}}\left[\alpha_{d}-\beta_{d} \log \left(\frac{B_{t}}{N_{t} Y_{t}}\right)\right]
\end{aligned}
$$

Fiscal Authority and Debt Dynamics

Government budget constraint and primary deficit:

$$
\begin{aligned}
d B_{t} & =\left(r_{t} B_{t}+D_{t}\right) d t+\sigma_{B} B_{t} d Z_{t}^{B} \\
\frac{D_{t}}{N_{t} Y_{t}} & =\frac{B_{t}}{N_{t} Y_{t}}\left[\alpha_{d}-\beta_{d} \log \left(\frac{B_{t}}{N_{t} Y_{t}}\right)\right]
\end{aligned}
$$

LEMMA 1

The log debt to GDP ratio evolves as follows:

$$
\begin{aligned}
\widehat{B}_{t} & =\left(r_{t}-g-n+\alpha_{d}+\frac{\sigma_{y}^{2}-\sigma_{B}^{2}}{2}-\beta_{d} \widehat{B}_{t}\right) d t+\sigma_{\hat{B}} d Z_{t}^{\widehat{B}} \\
d Z_{t}^{\widehat{B}} & =\left(\sigma_{B} / \sigma_{\widehat{B}}\right) d Z_{t}^{B}-\left(\sigma_{y} / \sigma_{\widehat{B}}\right) d Z_{t}^{y} \\
\sigma_{\widehat{B}}^{2} & =\sigma_{B}^{2}+\sigma_{y}^{2}
\end{aligned}
$$

Rates and Equity Premium

Interest rates and equity premium:

Rates and Equity Premium

Interest rates and equity premium:

$$
\begin{aligned}
& r^{s}=\rho+\theta g-\frac{\gamma(\theta+1)}{2} \sigma_{y}^{2} \\
& r_{t}=r^{s}-\alpha_{u}+\beta_{u}+\beta_{u} \widehat{B}_{t} \\
& \frac{1}{d t} \mathbb{E}\left(d r_{t}^{x}-r^{s}\right)=\gamma \sigma_{y}^{2}
\end{aligned}
$$

Rates and Equity Premium

Interest rates and equity premium:

$$
\begin{aligned}
& r^{s}=\rho+\theta g-\frac{\gamma(\theta+1)}{2} \sigma_{y}^{2} \\
& r_{t}=r^{s}-\alpha_{u}+\beta_{u}+\beta_{u} \widehat{B}_{t} \\
& \frac{1}{d t} \mathbb{E}\left(d r_{t}^{x}-r^{s}\right)=\gamma \sigma_{y}^{2}
\end{aligned}
$$

Drift of the log debt to GDP ratio:

Rates and Equity Premium

Interest rates and equity premium:

$$
\begin{aligned}
& r^{s}=\rho+\theta g-\frac{\gamma(\theta+1)}{2} \sigma_{y}^{2} \\
& r_{t}=r^{s}-\alpha_{u}+\beta_{u}+\beta_{u} \widehat{B}_{t} \\
& \frac{1}{d t} \mathbb{E}\left(d r_{t}^{x}-r^{s}\right)=\gamma \sigma_{y}^{2}
\end{aligned}
$$

Drift of the log debt to GDP ratio:
$\underbrace{\rho+(\theta-1) g-n}_{\text {deterministic }}-\underbrace{\frac{\gamma(\theta+1)}{2} \sigma_{y}^{2}}_{\text {risk }}+\underbrace{\frac{\sigma_{y}^{2}-\sigma_{B}^{2}}{2}}_{\text {Ito's lemma }}-\underbrace{\left(\alpha_{u}-\beta_{u}\right)}_{\text {liquidity }}+\alpha_{d}-\left(\beta_{d}-\beta_{u}\right) \widehat{B}_{t}$

EqUILIbRIUM DEbT TO GDP PROCESS

PROPOSITION 2

If $\beta>0$, the log debt to GDP ratio \widehat{B}_{t} follows an Ornstein-Uhlenbeck process with:

$$
d \widehat{B}_{t}=\left(\alpha-\beta \widehat{B}_{t}\right) d t+\sigma_{\widehat{B}} d Z_{t}^{\widehat{B}}
$$

EqUILIBRIUM DEbT TO GDP PROCESS

PROPOSITION 2

If $\beta>0$, the log debt to GDP ratio \widehat{B}_{t} follows an Ornstein-Uhlenbeck process with:

$$
d \widehat{B}_{t}=\left(\alpha-\beta \widehat{B}_{t}\right) d t+\sigma_{\widehat{B}} d Z_{t}^{\widehat{B}}
$$

PROPOSITION 3

If $\beta>0$, the \log debt to GDP ratio admits a stationary distribution that is normal with:

$$
\widehat{B} \sim \mathcal{N}\left(\frac{\alpha}{\beta}, \frac{\sigma_{\widehat{B}}^{2}}{2 \beta}\right)
$$

In levels, the debt to GDP ratio is lognormally distributed.

Comparative Statics

Mean and variance of the debt to GDP ratio:

$$
\begin{aligned}
\mathbb{E}\left(\frac{B_{t}}{N_{t} Y_{t}}\right) & =e^{\left(\alpha+\sigma_{\hat{B}}^{2}\right) / \beta} \\
\mathbb{V}\left(\frac{B_{t}}{N_{t} Y_{t}}\right) & =\left(e^{\sigma_{\hat{B}}^{2} / 2 \beta}-1\right) e^{2 \alpha / \beta+\sigma_{\hat{B}}^{2} / 2 \beta}
\end{aligned}
$$

- Lower population growth n raises mean and variance of debt to GDP ratio
- Lower productivity growth g lowers mean and variance of the debt to GDP ratio when $\theta>1$
- Effect of a rise in σ_{y} on mean debt to GDP ratio is ambiguous

Defining Debt Sustainability

- Assumed fiscal policy ensures existence of a stationary distribution for the debt to GDP ratio irrespective of drift term
- How should we think about debt dynamics absent an active fiscal response
- Allow the debt to GDP ratio to drift with a constant primary deficit
- Experiment in the spirit of Ball, Elmendorf and Mankiw (1998) and Blanchard (2019)

Distribution With Passive Fiscal RESPONSE

PROPOSITION 4

If $\beta_{d}=\beta_{u}=0, \alpha<0$, and there exists a lower reflecting barrier, the process for the log debt to GDP ratio admits a stationary distribution that is an exponential distribution with rate parameter λ where:

$$
\begin{aligned}
d \widehat{B}_{t} & =\alpha d t+\sigma_{\widehat{B}} d Z_{t}^{\widehat{B}} \\
\kappa & =-2 \alpha / \sigma_{\widehat{B}}^{2}
\end{aligned}
$$

In levels, the stationary distribution of the debt-to-GDP ratio is Pareto with shape parameter κ.

Hitting a Default Threshold

- Both lognormal and Pareto distribution have an infinite support: $\mathbb{P}\left(b_{t}>b_{\text {def }}\right)>0$
- Under passive fiscal response and given an initial debt to GDP ratio b_{0}, debt to GDP ratio will exceed $b_{\text {def }}>b_{0}$:

$$
\lim _{t \rightarrow \infty} \mathbb{P}\left(b_{t}>b_{d e f}\right)=1
$$

- However, since log debt to GDP ratio is an ordinary Brownian motion under a passive fiscal response, expected first-passage time for any $b_{\text {def }}>b_{0}$ is infinite:

$$
\mathbb{E}\left(T_{b_{d e f}}\right)=\infty
$$

Extensions: Rare Disasters

Endowment process:

$$
d Y_{t}=g Y_{t-}+\sigma_{y} Y_{t-} d Z_{t}^{y}+k Y_{t-} d J_{t}
$$

Output follows a jump-diffusion process where $k<0$ is the size of the fall in log output

Extensions: Rare Disasters

Endowment process:

$$
d Y_{t}=g Y_{t-}+\sigma_{y} Y_{t-} d Z_{t}^{y}+k Y_{t-} d J_{t}
$$

Output follows a jump-diffusion process where $k<0$ is the size of the fall in log output

Interest rates and equity premium (Wachter (2013)):

$$
\begin{array}{r}
r^{s}=\rho+\theta g-\frac{\gamma(\theta+1)}{2} \sigma_{y}^{2}+\lambda e^{-\gamma Z}\left(e^{Z}-1\right) \\
\frac{1}{d t} \mathbb{E}\left(d r_{t}^{x}-r^{s}\right)=\gamma \sigma_{y}^{2}+\lambda\left(e^{\gamma Z}-1\right)\left(1-e^{Z}\right)
\end{array}
$$

where $k=e^{Z}-1$ and λ is the intensity of the Poisson process J_{t}

Extensions: Rare Disasters

Stationary Distribution

Komolgorov forward equation:

$$
\begin{array}{r}
0=-\frac{d}{d b} \alpha g(b)+\frac{1}{2} \frac{d^{2}}{d b^{2}} \sigma_{\hat{b}}^{2} g(b)-\lambda g(b)+\lambda g\left(b e^{-Z}\right) \\
\Rightarrow 0=\alpha \kappa+\frac{\sigma_{\hat{B}}^{2}}{2} \kappa(\kappa-1)-\lambda+\lambda e^{Z(\kappa+1)}
\end{array}
$$

Proposition 5

With rare disasters, the debt to GDP ratio follows a geometric Brownian motion with jumps. If there exists a $\kappa>0$ that solves the KFE, the debt to GDP ratio admits a stationary distribution that is Pareto with tail parameter κ.

Outline for Presentation

1. Empirical facts

2. Case of no default
3. Case of default

Debt Dynamics under Default

Deterministic CASE

- Surplus function $s(\cdot)$ is bounded above
- Maximum surplus motivated by presence of a Laffer curve

Debt Dynamics under Default

RARE DISASTERS

Debt Dynamics under Default

DECLINE IN GROWTH

Debt Dynamics under Default

RISE IN DISASTER RISK

KEY TAKEAWAYS

Lessons:

- Average cost of servicing the debt close to zero or negative
- Elevated risk of rare disasters may be beneficial for debt sustainability by lowering servicing cost
- With default, elevated risk premia lowers debt limit but also lowers safe interest rate

Limitations:

- $r-(g+n)$ not a sufficient statistic for optimal level of debt
- Optimal level of debt depends on degree of crowding out, costs of distortionary taxation, etc.

Additional Slides

CALIBRATION STRATEGY

1. Output process: $g=2.06 \%, \sigma_{y}=2.5 \%, n=1.15 \%$
2. Elasticity of intertemporal substitution: $1 / \theta=0.75$
3. Liquidity parameters: α_{u}, β_{u}

- Regression of spread on US AAA corporate debt relative to 10-year Treasuries on debt to GDP ratio (Krishnamurthy and Vissing-Jorgensen (2012))

4. Safe rate and equity premium: ρ and γ

- Target gov't bond yield of 2.48% and equity premium of 5.16% (Jorda et al. (2018))

5. Fiscal policy parameters: $\alpha_{d}, \beta_{d}, \sigma_{b}$

- Target mean and variance of log debt to GDP ratio in postwar period (Jorda, Schularick and Taylor (2016))
- Target correlation of r_{t} and $d Y_{t} / Y_{t}$ of -0.056 in postwar period

Secular Stagnation Effects

Comparative Statics

Panel A: Active fiscal response	$\mathbb{E} r_{t}$	$\frac{1}{d t} \mathbb{E}\left(d r_{t}^{x}-r_{t}\right)$	$\mathbb{E} b_{t}$	$\mathbb{V} b_{t}$
Baseline	2.48	5.16	-	-
Pop. growth $n=0.70 \%$	2.48	5.16	$+16 \%$	$+33 \%$
Prod. growth $g=0.70 \%$	0.80	5.16	-13%	-25%
Rise in risk premia σ_{y}	0.16	7.16	-33%	-29%
Panel B: Passive fiscal response	α	λ		
Baseline	-0.73%	1.071		
Pop. growth $n=0.70 \%$	-0.28%	1.027		
Prod. growth $g=0.70 \%$	-1.18%	1.117		
Rise in risk premia	-3.03%	1.115		

Shifts in Stationary Distribution

RaRE DISAStERS

Comparative Statics

- Calibrate rare disaster probability: $\delta=1.7 \%$ and loss $k=-29 \%$ based on Barro (2006)
- Resulting risk aversion coefficient: $\gamma=7$

Passive fiscal response	$\mathrm{E} r_{t}$	$\frac{1}{d t} \mathbb{E}\left(d r_{t}^{x}-r_{t}\right)$	λ
Baseline	2.48	5.36	0.968
Pop. growth $n=0.70 \%$	2.48	5.36	0.921
Prod. growth $g=0.70 \%$	0.67	5.36	1.015
Rise in risk premia $\delta=2.4 \%$	0.25	7.39	1.161
Rise in risk premia $k=-31.4 \%$	0.43	7.37	1.172

Economic Environment

- Time: $t=0,1,2, \ldots$
- Goods: consumption and investment good
- Agents: households (J cohorts), representative firm
- Assets: capital, bonds
- Technology: age-specific human capital profiles $h c_{j}$

Calibration and Targeted Moments

Panel A: Data	Symbol	Value	Source
Mortality profile	$s_{j, t}$		US mortality tables, CDC
Income profile	$h c_{j}$		Gourinchas and Parker (2002)
Population growth rate	n	0.70%	US Census Bureau
Productivity growth	g	0.70%	Fernald (2012)
Government spending (\% of GDP)	$\frac{G}{Y}$	19.2%	BEA
Public debt (\% of GDP)	$\frac{b_{g}}{Y}$	70%	CBO
Panel B: Related literature	Symbol	Value	
Elasticity of intertemporal substitution	ρ	0.75	
Depreciation rate	δ	8%	
			Target
Panel C: Matching targets	Symbol	Value	
Rate of time preference	β	1.0029	Real US 10-year rate
Intermediation wedge	ω	0.1733	Corporate Aaa spread
Retailer elasticity of substitution	θ	4.6174	Labor share
Capital share parameter	α	0.2341	Investment to GDP ratio

- Social security replacement rate of 50% and retirement at age 65
- Age and survival probabilities based on Census projections

Effect of Aging on interest rates

Debt to GDP projections for the US

- Baseline model projection more optimistic than CBO
- Social security reforms have large impacts on the debt to GDP ratio

