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Introduction

• This paper presents a framework for analysing the asset-pricing and macro
implications of the existence of “systemic defaults”.

• It is flexible and tractable enough to simultaneously replicate the price
fluctuations of various far-out-of-the-money (disaster-exposed) credit and equity
derivatives.

• Bringing (macroeconomic) structure to the model, we exploit information from
disaster-exposed assets to extract information on the expected influence of a
systemic default on consumption and on the probability of financial meltdowns.
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Introduction

• Disaster Risk (DR), defined as a sudden and dramatic decrease in output and
consumption, helps solve many asset-pricing puzzles.

[Rietz, 1988, Barro, 2006, Gabaix, 2012, Seo and Wachter, 2018].

• Several contributions show that far-out-of-money credit and equity derivatives
provide useful information regarding DR.

• DR generally modelled as an exogenous event causing simultaneously

• sharp decreases in economic output or consumption,
• dramatic increases in the default probabilities of bond issuers and/or
• dramatic decreases in the asset values of firms [Seo and Wachter, 2018].

• But the default of a systemic entity is, in itself, (at least perceived as) a disaster:

• Largest ↘ in the U. of Michigan Consumer Sent. index: 09/2008
(chart on next slide).

• This is at the core of novel regulations on SIFIs
[Battiston et al., 2016, Brownlees and Engle, 2017].
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This paper

• Structural no-arbitrage asset-pricing framework where the defaults of some
entities, called systemic entities, have economy-wide effects.

• The default of a systemic entity

can have a negative effect on economic activity / consumption
+

is contagious (can provoke additional systemic defaults)

⇒ A systemic default is disastrous.

• The model is tractable. Closed-form formulas for various credit/equity
derivatives.

• The model captures the main fluctuations of prices of various disaster-exposed
instruments (European data, 2006-2017):
Credit Index swaps, Synthetic CDOs, far-out-of-the-money equity put options.

• Main contribution: measuring the macroeconomic influence of contagious
corporate defaults.

Corporate default
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Results overview

• Assets exposed to disaster risk (systemic defaults) carry important credit risk
premiums.
[Credit risk premiums: prices/spreads difference between observed prices/spreads
and the prices/spreads that would prevail if agents were risk-neutral.]

• Naturally, systemic defaults occur in bad states.
⇒ A large part of the spreads of CDS written on systemic entities corresponds to
risk premiums (≈ 75% for the 10-year maturity).

• Joint modelling of macroeconomic variables and financial prices reveals the
expected macroeconomic impact of systemic events:
⇒ A systemic default is expected to be followed by a 3% ↘ in consumption.

• Systemic risk indicators = Probability of having more than 10 defaults among
the 125 iTraxx constituents within two years:

• 5% in September 2008 (Lehman bankruptcy)
• 6% in late 2011 (euro-area sovereign debt crisis).
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Disaster Endogenous X
Exogenous (X) X X X X X X X X X

Structural (Macro) X X X X X

Asset class
Stock options X X X X X X
CDS/Bond spd X X X X X X X X X
Tranches X X X X X X X X

Param. Estimated X X X X X X X X
Calibrated (X) X X X

Period Start 06 05 97 94 04 05 04 03 04 70
End 17 08 14 15 08 07 06 05 07 08
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Model (1/4)

• ns
t : Number of systemic defaults occurring on date t.

• Ns
t : Number of systemic entities in default at date t, i.e. Ns

t = ns
t + Ns

t−1.

• xt and yt : xt ≥ 0, yt ≥ 0,
Exogenous processes with Gamma-type transition distributions. Dynamics:{

xt − µx = ρx(xt−1 − µx) + σx,tεx,t
yt − xt = ρy (yt−1 − xt−1) + σy,tεy,t ,

(1)

(V-ARG: [Gouriéroux and Jasiak, 2006] or [Monfort et al., 2017]).

⇒ If 0 < ρy < ρx < 1, then xt can be seen as the trend component of yt .

8



Model (2/4)

• For any process kt (say), we use the notation kt = {kt , kt−1, . . . }.
• Conditional distribution of the number of systemic defaults:

ns
t+1|xt+1, yt+1,N

s
t ∼ Poisson(βyt+1 + cns

t ). (2)

• If c > 0:
Defaults on date t increases the conditional probability of having additional
defaults on the next date.
⇒ Systemic defaults are infectious [Davis and Lo, 2001], or contagious.
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Model (3/4)

• ∆ct = log(Ct/Ct−1): Log growth rate of per capita consumption. ∆ct follows:

∆ct = µc,0 + µc,xxt + µc,yyt + µc,wwt + σcε
c
t εct ∼ i .i .d .N (0, 1). (3)

where wt depends on systemic defaults:

wt |xt , yt ,Ns
t ∼ γ0(ξwn

s
t−1, µw ). (4)

• γ0 is a distribution featuring a point mass at zero [Monfort et al., 2017].

⇒ The conditional probability that wt = 0 is exp(−ξwns
t−1),

wt = 0 as long as there has been no systemic defaults in the previous
period, which is rather frequent.

• If µc,w < 0 and |µc,w | is large or
if µc,w < 0 and |µc,w | not so large but c (contamination) is large, then
systemic defaults can give rise to “disastrous” decreases in Ct .
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Model (4/4)

Panel (a)

Present model

Systemic entities

ytxt

n1,t

iTraxx

n2,t

n3,t

Non systemic

entities

wt ∆ct

Consumption
growth

Panel (b)

Standard disaster-risk model

xt , yt wt (jump)

n1,t n2,t n3,t ∆ct
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Pricing formulas (1/2)

• Agents feature Epstein-Zin preferences, with a unit elasticity of intertemporal
substitution (EIS). [Piazzesi and Schneider, 2007, Seo and Wachter, 2018].

• The time-t utility of a consumption stream (Ct = exp(ct)) is recursively defined by

ut = (1− δ)ct +
δ

1− γ
log (Et exp [(1− γ)ut+1]) . (5)

where δ denotes the time discount factor and γ is the risk aversion parameter.
• Xt = [xt , yt ,wt ,Ns

t ,N
s
t−1]′ is affine ⇒ we can solve for ut ⇒ The s.d.f. is of the form:

Mt,t+1 = exp
[
−(η0 + η′1Xt) + π′Xt+1 − ψ(π,Xt)− ηcεct −

1
2
η2c

]
,

where ψ(π,Xt) is the condit. log-Laplace transform of Xt , i.e. Et(eu
′Xt+1 ) = eψ(u,Xt ).

• The risk-neutral measure is then defined by means of the change of probability:(
dQ
dP

)
t,t+1

=
Mt,t+1

Et(Mt,t+1)
= exp

[
π′Xt+1 − ψ(π,Xt)− ηcεct −

1
2
η2c

]
. (6)
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Pricing formulas (2/2)
Credit instruments:

• The risk-neutral dynamics of the number of defaults is implied by eq. (6).

⇒ Formulas to price CDS, Credit Index swaps (CIS) and synthetic CDO. CDO

CDS: protection payoff > 0, when the entity on which the CDS is written
defaults.

CIS: protection payoff > 0, when one entity of the underlying portfolio defaults.
CDO: protection payoff > 0, when one entity of the underlying portfolio defaults,

given that losses are in a given interval [a, b] (e.g. [a, b] = [3%, 6%]).

• Typical credit indices: iTraxx (Europe) and CDX (U.S.). 125 large firms.

Equity products:

• Model assumption: The dividend growth rate of a stock index is affine in Xt :

gd,t = µd,0 + µd,xxt + µd,yyt + µd,wwt .

• Xt affine ⇒ (approximate) closed-form solutions for the stock index price, puts
and calls. [Bansal and Yaron, 2004, Eraker, 2008]

• Typical equity indices: EUROSTOXX (Europe) and S&P (U.S.).

13



Data

• Data: January 2006 to September 2017 at a bi-monthly frequency.

• Credit derivatives:

• iTraxx Europe main index. 125 large European firms, whose credit default
swaps are actively traded. Systemic entities

• Credit index swap (CIS). Maturities: 3, 5, 7 and 10 years.
• CDOs: maturities of 3, 5 and 7 years and, for each maturity, 5 tranches:

0%-3%, 3%-6%, 6%-9%, 9%-12% and 12%-22%.

• Equity derivatives:

• Equity put options written on the EUROSTOXX 50.
Maturities of 6 and 12 months,
Strike = 70% of equity index,
i.e. options protecting against larger-than-30% falls in the equity index.
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An estimation approach that benefits from model tractability

• Γt : vector of observed variables (∆ct , 4 CIS, 15 CDO, 2 equity put options).

• Over our estimation period ns
t = 0 ⇒ the model predicts that these prices are

functions of zt = [xt , yt ]
′ and of Θ (vector of model parameters).

• Measurement equations (#21):

Γt = F (zt ; Θ) + εt , (7)

where εt are measurement errors, εt ∼ i .i .d .N (0,Σε).

• Transition equations (#2) = dynamics of zt :

zt+1 = µz + Φzzt + Σ1/2
z (zt)ξt+1, (8)

where ξt+1 is a martingale difference sequence with Vart(ξt+1) = Id .

• Some (preference) parameters are calibrated.
Remaining parameters are estimated by maximizing the approximate
log-likelihood computed by an Extended Kalman filter applied on the state-space
model (7)-(8).
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Fit of consumption growth and stock returns
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Fit of iTraxx index swap spreads

2006 2008 2010 2012 2014 2016 2018

0

50

100

150

200

Maturity: 3 years

●●●●●●●●●

●
●

●

●

●

●

●

●

●●
●

●

●
●

●
●●

●

●●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●
●

●●
●

●
●●

●
●

●

●

●

●●
●

●
●

●●

●
●●

● Data
Model

2006 2008 2010 2012 2014 2016 2018

0

50

100

150

200

250

Maturity: 5 years

in
 b

as
is

 p
oi

nt
s

●●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●●●
●●●

●
●

●

●

●

●●
●

●
●

●●

●

●
●

● Data
Model

2006 2008 2010 2012 2014 2016 2018

0

50

100

150

200

250

Maturity: 7 years

●●●●●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●
●
●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●●
●

●●●
●●

●

●●

●

●

●

●●
●

●
●

●●

●

●●

● Data
Model

2006 2008 2010 2012 2014 2016 2018

0

50

100

150

200

250

Maturity: 10 years

in
 b

as
is

 p
oi

nt
s

●●●●●
●●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●●

●

●
●

●
●

●
●

●

●

●
●

●

●

●
●

●●
●

●

●●
●

●
●
●

●
●

●

●
●
●

●
●

●

●

●

●●●
●

●
●●

●
●

●

● Data
Model

17



Fit of stock options (strike = 70% of spot index value)
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Fit of iTraxx tranches (grey:fitted, dashed: without risk premiums))
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Responses to an unexpected default of a systemic entity

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

1

2

3

4

5

Number of systemic defaults

Time after shock (h, in years)

in
 p

er
ce

nt

nt+h
s

0.0 0.5 1.0 1.5 2.0 2.5 3.0

−10

−8

−6

−4

−2

0

Consumption and stock returns (%)

Time after shock (h, in years)

in
 p

er
ce

nt

∆ct+1+...+∆ct+h
rt+1*+...+rt+h*

0.0 0.5 1.0 1.5 2.0 2.5 3.0

0

5

10

15

Vol. of consum. and stock returns (%)

Time after shock (h, in years)

in
 p

er
ce

nt

Vart+h(∆ct+h+1)
Vart+h(rt+h+1*)

Responses are in percent. Dashed lines correspond to a no-contagion model.

20



Adding non-systemic entities (Segment 3)
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Adding non-systemic entities (Segment 3)

• To estimate the model, we just need to consider systemic segments (S1 and S2).

• Once estimated, the model can be used to study non-systemic-related credit
instruments (S3).

• We consider different exposures to standard short-term risk (β3) and to systemic
risk (c3):

n3,t+1|xt+1, yt+1,Nt ∼ P(β3yt+1 + c3n
s
t )

• Slide 23:
Credit spreads for non-systemic entities that would have the same average proba.
of default (PD) than our systemic entities, but with c3 = 0.5c1 = 0.5c2
⇒ Almost no credit risk premiums (Q spreads ≈ P spreads).

• Slide 24:
Ratios between Q spreads and P spreads depending on (β3, c3) exposures.
⇒ For a given PD, the larger the exposure to systemic risk, the higher the risk
premiums (and the higher the CDS spread).
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Differences in Risk Premiums between systemic and non-systemic entities
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This figure shows CDS spreads written on systemic entities (solid lines) and non-systemic entities (triangles).

In grey: CDS spreads without risk premiums ⇒ spds between black and grey curves = risk premiums.
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Impact of exposures to the exogenous factor yt and to the number of
systemic defaults nst on the average size of credit risk premiums
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Systemic indicators
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Concluding remarks

• We introduce a structural no-arbitrage model allowing to study the pricing and
macro implications of the existence of disastrous defaults.

• Being tractable, the model can be estimated on cross-sections of equity and
credit derivatives including CDS, Credit Index swaps and synthetic CDOs.

• We obtain estimates of risk premiums for all considered instruments. Risk
premiums reflect the aversion of investors for systemic risk.
Ex.: If agents were not risk-averse, 10-year CDS written on systemic entities
would be 75% cheaper.

• The fraction of risk premiums in CDS or CDO spreads is relatively higher for
instruments that are more exposed to systemic risk.

• The estimated model suggests that a systemic default is expected to be followed
by a 3% ↘ in consumption (i.e. a systemic default is disastrous).

• Our systemic risk indicators (based on the probability of observing a certain
number of systemic defaults or a sharp drop of consumption) peaked following
Lehman’s bankruptcy and in late 2011 (euro-area sovereign debt crisis).
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Thank you!
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Synthetic Collateralised Debt Obligations (CDOs)
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Corporate default [Azizpour et al., 2018]

back

• They find strong evidence of contagion in corporate default clustering.

• They reject the hypothesis that the conditional default rates depend on observed
and latent systemic factors (e.g. interest rates, stock returns, GDP growth).

• Therefore, the default of a firm has a direct impact on the health of other firms
and contagion is not limited to the financial sector.

• Financial, legal or business relationships between firms might act as a conduit for
the spread of risk [default spillovers on business partners - network models].

• General Motors & Chrysler received 20% of the Troubled Asset Relief Program
funds (about $80bn).

• The arguments used at the time: millions of jobs; closing factories; suppliers and
dealerships liquidations; loss of industry.
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Systemic nature of iTraxx entities

Country Nb. iTraxx entities Market capitalization Nb. employees Long-term debt Total debt

Austria 1 3.88 3.44 3.45 3.27
Belgium 2 45.23 36.85 44.31 38.41
Denmark 1 3.64 2.29 65.19 70.08
Finland 1 3.46 1.37 3.00 2.36
France 29 50.25 41.78 71.64 64.48
Germany 21 41.10 43.70 65.29 69.27
Italy 7 40.55 31.08 61.16 60.08
Luxembourg 2 11.56 27.26 13.29 13.93
Netherlands 11 62.14 41.04 77.07 74.63
Norway 2 31.71 10.98 4.72 5.39
Portugal 1 23.61 – – –
Spain 6 8.07 26.73 68.43 64.76
Sweden 3 8.50 9.54 4.70 5.15
Switzerland 7 29.23 30.92 56.85 62.94
United Kingdom 31 37.43 27.63 51.22 55.06

• iTraxx 125 entities ⇒ market capitalisation: 5tn euros; number of employees:
12.5MM euros; long-term debt: 3.8tn euros; total debt: 5.5tn euros.

• French iTraxx entities (29 firms) as a proportion of all listed firms ⇒ market
capitalisation: 50%; number of employees: 42%; long-term debt: 72%; total
debt: 64%.

back
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iTraxx constituents’ stability
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The jth bar depicts the average proportion of constituents that belong to a given credit default
swap index (iTraxx or CDX) series and the one prevailing j semesters later. For instance, the first
(respectively second) bar is obtained by computing the proportion of iTraxx constituents that belong
to the index at 6 months intervals (respectively 12 months intervals).
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Estimated factors xt and yt
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{
xt − µx = ρx (xt−1 − µx ) + σx,tεx,t
yt − xt = ρy (yt−1 − xt−1) + σy,tεy,t .

Because ρy < ρx ≈ 1, xt can be interpreted as the “trend” of yt .
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Model-implied distribution of consumption growth
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Model parameterisation

Panel (a) – Calibrated parameters Panel (b) – Estimated parameters
γ 3 ci i ∈ {1, 2} 0.38 [0.00]
δ 0.997
EIS 1 βi i ∈ {1, 2} (×102) 1.42 [0.01]

µw (×10−2) 3.11 [0.68]
E(∆ct ) (×6) 1.50% ξw (×102) 5.14 [1.14]
s.d.(∆ct + · · · + ∆ct−5) 5.00%

σc 0.80% µx (×102) 0.81 [0.27]
E(gd,t ) (×6) 1.50% µy (×102) 6.19 [1.78]

ρx 0.988 [0.00]
ρy 0.831 [0.02]

µc,x (×104) −3.06 [0.90]
µc,y (×104) −6.74 [1.49]
µc,w (×104) −4.18 [0.31]

µd,x (×104) −7.91 [3.66]
µd,y (×104) −17.40 [7.11]
µd,w (×104) −10.80 [2.11]

E(∆ct ) is multiplied by 6 so as to be expressed in annualised terms. The parameterisation is such that
E(xt ) = E(yt ) = 1. Panel (b) reports parameters estimated by maximising an approximation of the log-
likelihood associated with the state-space model defined by measurement eq (7) and transition eq (8).
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