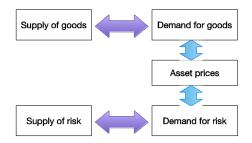
Monetary Policy with Opinionated Markets

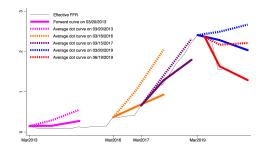
Ricardo J. Caballero and Alp Simsek MIT


ECB, October 19, 2020

Caballero and Simsek ()

Opinionated Markets

ECB, October 19, 2020 1 / 26


Agenda: "Risk Centric" Macro/Policy

• Central banks care about the top row... but operate in the lower row...

- Beliefs play a huge rule in financial markets
 - Previous papers: Beliefs heterogeneity within private sector; implications for macropru, PMP, LSAPs
 - This paper: Beliefs differences between "the Fed" and the Market

The Fed and markets disagree about interest rates

- Risk premium adjustment? But large gaps still remain
- Survey-based measures show qualitatively similar gaps (e.g., Greenbook vs Blue Chip)
- Other countries where CB's forecasts are published (e.g., Sweden, Norway, New Zealand)

- Literature: Fed's signaling of superior info about actions/economy
- But market disagrees with Fed even after the FOMC announcements
- Opinionated markets: Dec 2007: "hawkish" interest rate cut. WSJ:

"From talking to clients and traders, there is in their view no question the Fed has fallen way behind the curve," said David Greenlaw, economist at Morgan Stanley. "There's a growing sense the Fed doesn't get it."

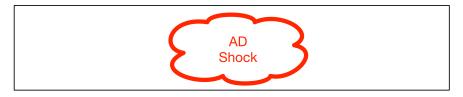
This paper: A model with Fed-market belief disagreements

We develop a model with opinionated markets. Key features:

- (i) Fed and market disagree about future aggregate demand
- (ii) They both learn from data

Main findings:

- Natural explanation for disagreements about interest rates
- Disagreements matter for optimal monetary policy

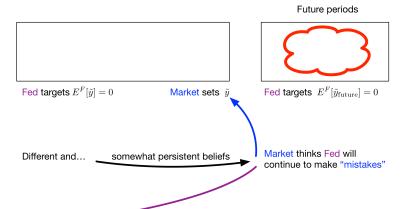

Extensions:

- Adding a NKPC: Disagreements as endogenous cost-push shock
- Information asymmetry and signaling: MP announcements (disagreements about signaling): "MP shocks" or "information"
- Heterogeneous data sensitivity (of beliefs): Every macro shock has an implicit "MP shock" in it

Setup: Fed sets rates under uncertainty about AD shocks

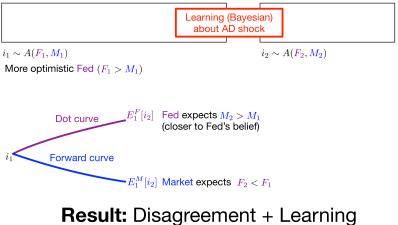
• AD shock: Moves current expenditure for given potential output

Current period



Fed sets rate to target $E^F[\tilde{y}] = 0$

Market "sets" \tilde{y}


Different beliefs about AD shock

=> Market thinks Fed makes a "mistake"

Result: Fed partially accommodates Market to mitigate "mistake"s impact on current output

(More accommodation when beliefs are more entrenched)

explains Dot-Forward gaps

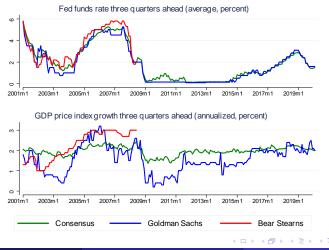

Caballero and Simsek ()

Image: Image:

3

Blue Chip forecasts support our ingredients


Rate forecasts correlate with AD (inflation) forecasts
 Forecasts feature confident disagreement

Caballero and Simsek ()

Opinionated Markets

ECB, October 19, 2020

Caballero and Simsek ()

3

Consider the standard NK model with AD shocks

- Market (*M*) with utility log $C_t \frac{N_t^{1+\varphi}}{1+\varphi}$ and discount rate ρ .
- Technology: Continuum of firms ν with $Y_t(\nu) = e^{a_t} N_t(\nu)^{1-\alpha}$.
- Nominal prices fully sticky (can relax) \implies $Y_t(\nu) = Y_t = C_t$.
- AD shocks g_t in period t: News about future $a_{t+1} = a_t + g_t$.
- Log-linearized output gives the IS curve:

$$\tilde{y}_t = -(i_t - \rho) + g_t + \overline{E}_t^M [\tilde{y}_{t+1}].$$

Monetary policy:

 $E_t^{\mathsf{F}}\left[\tilde{y}_t\right] = 0.$

Recall IS:

$$\tilde{y}_t = -(i_t - \rho) + g_t + \overline{E}_t^M [\tilde{y}_{t+1}].$$

• Equilibrium interest rate (i.e, $E_t^{\mathcal{F}}[\tilde{y}_t] = 0$)

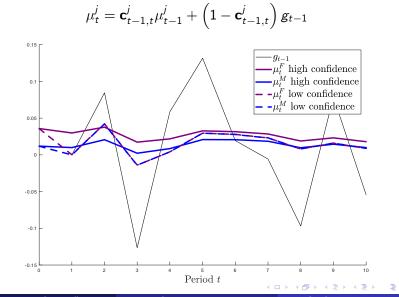
$$i_{t} = \rho + \underbrace{E_{t}^{F}[g_{t}]}_{\text{expected AD}} + \underbrace{E_{t}^{F}\left[E_{t+1}^{M}[\tilde{y}_{t+1}]\right]}_{\text{expected AD}}$$

• Equilibrium output gap

$$\tilde{y}_{t} = \underbrace{g_{t} - E_{t}^{F}[g_{t}]}_{\text{AD shock}} + E_{t+1}^{M}[\tilde{y}_{t+1}] - E_{t}^{F}\left[E_{t+1}^{M}[\tilde{y}_{t+1}]\right].$$

Beliefs: Persistent AD shock induces disagreement

$$g_t = g + \underbrace{u}_{t} + v_t$$

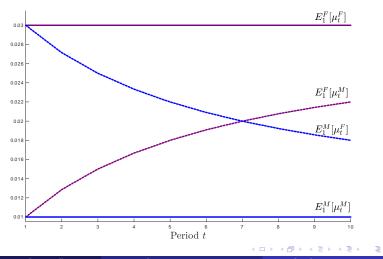

unknown component

• Heterogeneous prior beliefs (agree to disagree):

$$u \sim N\left(u_0^j, \quad rac{var\left(v_t\right)}{C_0^j}
ight) ext{ for } j \in \{F, M\}$$

- Conditional belief about AD $\mu_t^j \equiv E_t^j [g_t]$. Note $\mu_0^j = g + u_0^j$
- Bayesian updating: C_0^j ("confidence") controls data sensitivity
- Define relative confidence as $\mathbf{c}_{s,s+t}^{j} = \frac{C_{0}^{j}+s}{C_{0}^{j}+s+t}$

Agents learn over time



Caballero and Simsek ()

ECB, October 19, 2020

Agents expect the other agent to "learn"

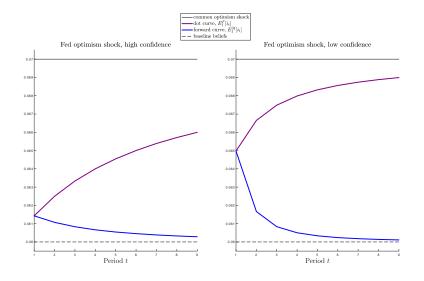
$$E_{s}^{j}\left[\mu_{s+t}^{j'}\right] = \mathbf{c}_{s,s+t}^{j'}\mu_{s}^{j'} + \left(1 - \mathbf{c}_{s,s+t}^{j'}\right)\mu_{s}^{j}$$

Caballero and Simsek ()

Opinionated Markets

ECB, October 19, 2020

Motivating facts from forecasters



Caballero and Simsek ()

э

Result: Disagreements affect current & expected rates

Caballero and Simsek ()

Opinionated Markets

ECB, October 19, 2020

Image: Image:

Motivating facts from forecasters

3

- Consider the case with partial price flexibility, $\kappa > 0$
- Then we can write the NKPC as

$$\pi_{t} = \kappa \tilde{y}_{t} + \beta \overline{E}_{t}^{F} [\pi_{t+1}] + u_{t}$$

where $u_{t} = \beta \left(\overline{E}_{t}^{M} [\pi_{t+1}] - \overline{E}_{t}^{F} [\pi_{t+1}] \right)$.

- Disagreements acts as endogenous "cost push" shocks, which breaks the divine coincidence and creates a trade-off between stabilizing output and inflation (Clarida, Gali, Gertler 1999)
- More accommodation of market's beliefs

Model with different μ_0^j and common C_0 except:

• In period 0 (only) Fed receives **private** signal (before *i*₀):

$$x^{F} = u + arepsilon^{F}$$
, where $arepsilon^{F} \sim N\left(0, I^{-1}\Sigma
ight)$

• Market agrees with Fed that the signal is informative

Model with different μ_0^j and common C_0 except:

• In period 0 (only) Fed receives **private** signal (before *i*₀):

$$x^{F} = u + \varepsilon^{F}$$
, where $\varepsilon^{F} \sim N\left(0, I^{-1}\Sigma
ight)$

• Market agrees with Fed that the signal is informative

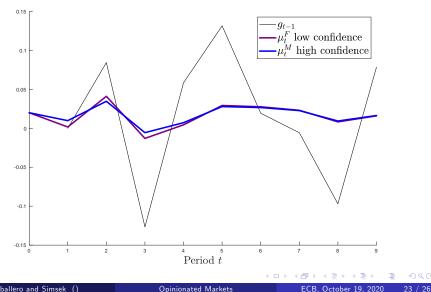
Equilibrium rate with signaling:

$$i_{0} = \rho + g + \underbrace{\frac{I}{C_{0} + I} x^{F}}_{\text{signaling}} + \underbrace{\frac{C_{0}}{C_{0} + I} \left(\left(1 - \overline{\mathbf{c}}_{0,1}\right) u_{0}^{F} + \overline{\mathbf{c}}_{0,1} u_{0}^{M} \right)}_{\text{disagreement}}$$

Signaling with disagreement about Fed's information

- Now suppose Market has two types: Agreeable or Disagreeable
- Disagreeable type thinks x^F is uninformative.
- Fed sets *i*₀ without knowing the market's type:

$$i_0 = \rho + g + \frac{I}{C_0 + I} \left(\overbrace{< x^F}^{F \text{ discounts its signal}} \right) + \dots$$


• Suppose signal is positive $x^F > 0$. Then

$$E^{F}\left[ilde{y}_{0}
ight] \left\{egin{array}{c} < 0 & ext{if type } D \ > 0 & ext{if type } A \end{array}
ight.$$

MP shocks: "Mistake" $(i_0 \uparrow, E[\tilde{y}_0] \downarrow)$ or "information" $(i_0 \uparrow, E[\tilde{y}_0] \uparrow)$

Heterogeneous data sensitivity: "MP mistake" shocks

Back to no signaling. Suppose heterogeneous sensitivity, e.g., $C_0^F < C_0^M$

Caballero and Simsek ()

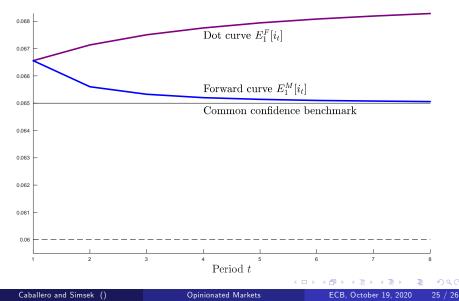
ECB, October 19, 2020


Shocks come bundled with a "MP mistake" shock

$$\tilde{y}_{t} = \underbrace{g_{t} - E_{t}^{F}[g_{t}]}_{\text{AD shock}} + \underbrace{E_{t+1}^{M}[\tilde{y}_{t+1}] - E_{t}^{F}\left[E_{t+1}^{M}[\tilde{y}_{t+1}]\right]}_{\text{"mistake" shock}}.$$

Result: Heterogenous sensitivity affects the output impact of shocks

$$\tilde{y}_t = \mathbf{D_t} \left(g_t - E_t^F \left[g_t \right] \right)$$


where

ECB, October 19, 2020

Data-sensitive Fed: Shocks are "absorbed more" by rates

Suppose Fed is more data-sensitive and initial shock positive $\Delta g_0 > 0$

Model with opinionated disagreements between markets and Fed:

- With learning, translates into disagreements in expected rates
- Disagreements affect current policy rate through MP "mistakes"
- Disagreements can break the **divine coincidence** between output and inflation stabilization

Extensions:

- Disagreement about signal: MP information or "mistake" shock
- Heterogeneous data sensitivity. Shocks bundled w/ MP "mistakes"