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Research questions

Setting: We are interested in assessing “inflation risks”, i.e. risk of extreme realizations of
inflation

Objective 1: Are credit and money indicators useful in predicting the distribution of HICP
inflation? → particular attention to tail risks

Literature 1: Quantile Regressions:
Financial indicators are useful in the prediction of the distribution of future
output growth (Adrian et al., 2019, AER), and inflation (Lopez-Salido and
Loria, 2020, CEPR), especially for downside risks; real variables important for
long-run forecasting of US inflation (Korobilis, 2016, IJF)
Traditional regressions:
Money and credit are helpful predictors of long-run inflation but only recently
(Falagiarda and Sousa, 2017); Predictors of inflation are short-lived (“pockets of
predictability”): Stock and Watson (1999, JME); Koop and Korobilis (2012,
IER)
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Research questions

Setting: We are interested in assessing “inflation risks”, i.e. risk of extreme realizations of
inflation

Objective 2: Are quantile regressions appropriate for assessing tail risks of macroeconomic
variables?

Literature 2: Stochastic volatility (SV) very important for forecasting the distribution of
inflation (Stock and Watson, 2007, JMCB)
Recent literature emphasizes that forecasting macro risks with SV/GARCH is as
good as quantile regressions → Brownlees and Souza (forthcoming, JME);
Carriero et al. (2020a,b, Clev. Fed WP)
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Main features of our analysis

• Propose a quantile regression with time-varying parameters (TVPs)

• Previous literature: Kim (2007, Annals) uses regression splines; Cai and Xu
(2008, JASA) fit local polynomials; Wu and Zhou (2017, JBES) also
nonparametric.

• However, we desire a simple, fast and interpretable method, that can be used
on a daily basis and is future-proof

• We specify a parametric Bayesian TVP-QR, using the well-known state-space
form (e.g. Cooley and Prescott, 1976, ECMTA)

• Goncalvez et al. (2020, Bayes.Anal.) and Lim et al. (2020, Stat. Sin.) develop
approximate inference methods, because MCMC is cumbersome

• Major methodological contributions of our paper:
→ Develop a very fast Gibbs sampler algorithm for TVP-QR models
→ Develop automatic shrinkage methods to deal with overparametrization
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Main (preliminary) findings

Data: Quarterly Euro-Area data from 1990q1 to 2019q4 for ann. qly core HICP
growth (LHS) and for 19 financial variables (RHS)

We find that:

✓□ Various credit and money aggregates provide marginal value added for specific
horizons and tail risks

✓□ Quantile regressions with TVPs are clearly better (for density and tail
forecasts) than TVP-SV regressions and linear quantile regressions

✓□ Quantile regressions with both TVPs and SVs are impractical – asking too
much from the data to estimate SV for each quantile level.

Korobilis et al. (2021) The time-varying evolution of inflation risks 6/ 39



Background Methodology Simulation study Model evaluation using real data

Background

Methodology

Simulation study

Model evaluation using real data

Korobilis et al. (2021) The time-varying evolution of inflation risks 7/ 39



Background Methodology Simulation study Model evaluation using real data

Mean vs Quantile regression model
We model dependence between yt (scalar) and xt (1× p) using the following
equation

yt = f(yt|xt) + εt, (1)

1. f(yt|xt) = E(yt|xt) = xtβ gives the linear mean regression (MR) model
with solution

β̂ = min
β

E
T∑
t=1

(yt − xtβ)
2, (2)

2. f(yt|xt) = Qτ (yt|xt)(= xtβ(τ)) gives the linear quantile regression (QR)
model, τ = τ1, τ2, ..., τn, with solution

β̂(τ) = min
β(τ)

E
T∑
t=1

ρτ (yt − xtβ(τ)), (3)

where ρτ (u) = (τ − I(u < 0))u is a loss function.
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Classical vs Bayesian quantile regression model
In the linear quantile regression model

yt = xtβ(τ) + εt, (4)

•

β̂(τ) = min
β(τ)

E
T∑
t=1

(τ − I(εt < 0))εt, (5)

can be solved by first writing it as a linear programming problem and
subsequently using simplex methods.

• Yu and Moyeed (2001, Stas & Prob. Let.) show that the above problem is
equivalent to maximizing an asymmetric Laplace (AL) likelihood for εt, that is
the density

f(ε; τ) =
T∏
t=1

τ(1− τ)
[
e(1−τ)εtI(εt ≤ 0) + e−τεtI(εt > 0)

]
. (6)
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Bayesian quantile regression model
Bayesian quantile regression is via the following parametric spec

yt = xtβ(τ) + σ(τ)εt, εt ∼ AL(τ), (7)

where β(τ) and σ(τ) are parameters for each quantile level.
We can write the asymmetric Laplace as a scale mixture of Normals (“double
exponential” distribution, cf Tibsirani, 1996, JRSSB, Section 5)

yt = xtβ(τ) + θ(τ)zt + σ(τ)κ(τ)
√
zt(τ)ut, ut ∼ N(0, 1), (8)

where θ(τ) = 1−2τ
τ(1−τ) and κ(τ)2 = 2

τ(1−τ) and zt(τ) ∼ Exp(σ(τ)2). Likelihood of y is

T∏
t=1

1√
2πzt(τ)σ(τ)2κ(τ)2

exp

{
−(yt − xtβ(τ)− θ(τ)zt(τ))

2

2zt(τ)σ(τ)2κ(τ)2

}
exp

{
− zt(τ)

σ(τ)2

}
. (9)

Integration of (9) w.r.t. zt gives the asymmetric Laplace density.
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Bayesian quantile regression model: Estimation (sampling)
♣ Likelihood is conditionally Normal → easy to derive conditional posteriors
Indeed, for priors of the form

β(τ) ∼ N(0, V (τ)), (10)

σ(τ) ∼ IG(ρ1, ρ2), (11)

zt(τ) ∼ exp(σ(τ)2), (12)

Conditional posteriors are of the form

β(τ)|• ∼ N
((
x′Ux+ V (τ)−1

)−1 × (x′U [y − θ(τ)z(τ)]) ,
(
x′Ux+ V (τ)−1

)−1
)
, (13)

σ(τ)2|• ∼ iGamma

(
ρ1 +

3T

2
, ρ2 +

T∑
t=1

(yt − xtβ(τ)− θ(τ)zt(τ))
2

2zt(τ)κ(τ)2
+

T∑
t=1

zt(τ)

)
,(14)

zt(τ)|• ∼ IG

(√
θ(τ)2 + 2κ(τ)2

|yt − xtβ(τ)|
,
θ(τ)2 + 2κ(τ)2

σ(τ)2κ(τ)2

)
,∀t ∈ {1, ..., T} (15)

U is a T × T diagonal covariance matrix with t-th element (zt(τ)σ(τ)
2κ(τ)2)−1
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Bayesian quantile regression model: Estimation (sampling)

• We can devise a Gibbs sampler to sample sequentially from conditionally
posteriors for each τ

• For τ = 0.05, 0.10, ..., 0.90, 0.95 we need to iterate through these posteriors 19
times per each iteration of the Gibbs sampler

• σ(τ),zt(τ) can be updated in one step for all t, τ ; β(τ) faster to update
sequentially for each τ (e.g. parallelize this step)

• Khare and Hobert (2012, JMA) show that this Gibbs sampler converges at a
geometric rate

• This is also true in the “large p, small T” case
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Bayesian quantile regression model: Shrinkage
• A major benefit of parametric Bayesian inference is the vast availability of
model selection and shrinkage priors

• Shrinkage is imperative in QR models: only few observations available for
each quantile

• We consider the Horseshoe of Carvalho et al. (2010, Biometrika)

• Bayes estimates are consistent a-posteriori, with risk equivalent to the (Bayes)
oracle (Armagan et al., 2013, Biometrika; Ghosh et al., 2016, Bayes.Anal.)

• Results are for Normal regression, while our model is conditionally Normal

β(τ)i|σ(τ)2, λ(τ)2, ψi(τ)
2 ∼ N

(
0, σ(τ)2λ(τ)2ψi(τ)

2
)
, (16)

λ(τ) ∼ Cauchy+ (0, 1) , (17)

ψi(τ) ∼ Cauchy+ (0, 1) , (18)
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Time-varying parameter Bayesian quantile regression model
Linear Bayesian quantile regression is

yt = xtβ(τ) + εt, εt ∼ AL(σ(τ)2), (19)

In line with the macro TVP regression literature, the extension is straightforward

yt = xtβt(τ) + εt, εt ∼ AL(σ(τ)2), (20)

βt(τ) = βt−1(τ) + vt, vt ∼ N(0, V (τ)), (21)

• Allowing for stochastic volatility (SV) σt(τ)
2 is a bad idea for short

(quarterly) EA data → Gerlach et al. (2011, JBES): estimate a Bayesian
quantile SV model for daily stock indices

• TVP-QR is a conditionally Gaussian & linear state-space model

Korobilis et al. (2021) The time-varying evolution of inflation risks 14/ 39



Background Methodology Simulation study Model evaluation using real data

Time-varying parameter Bayesian quantile regression model

We follow ideas in Korobilis (forthcoming, JBES) and Goulet Coulombe (2020,
Arxiv) and rewrite the TVP regression by modeling the increments ∆βt(τ)

yt = xtβt(τ) + εt (22)

= xt∆βt(τ) + xtβt−1(τ) + εt (23)

= xt∆βt(τ) + xt∆βt−1(τ) + xtβt−2(τ) + εt (24)

... (25)

= xt∆βt(τ) + xt∆βt−1(τ) + ...+ xt∆β2(τ) + xtβ1(τ) + εt (26)

The above holds for the t-th equation of the TVP-QR.
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Time-varying parameter Bayesian quantile regression model

The previous equation in matrix form becomes
y1
y2
...
yT−1

yT

 =


x1 0 ... 0 0
x2 x2 ... 0 0
... ... ... ... ...

xT−1 xT−1 ... xT−1 0
xT xT ... xT xT




β1(τ)
∆β2(τ)
...

∆βT−1(τ)
∆βT (τ)

+


ε1
ε2
...
εT−1

εT

 ,(27)

(T × 1) (T × Tp) (Tp× 1) (T × 1)

♣ In this form the TVP regression is a high-dimensional model with more
predictors than observations
♣ Therefore, the state equation can be thought of as the regularizing prior
β∆(τ) ∼ N(0, V (τ)) → sensitivity to choice V (τ) (Amir-Ahmadi, 2020, JBES)
♣ Convert this to the Horseshoe specification and allow the data to select V (τ)
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Time-varying parameter Bayesian quantile regression model

• Using the previous, linear form, we can sample the TVP regression without
relying on Kalman filter

• Great transformation because we avoid sequential sampling that cannot be
parallelized

• However, in the linear form we have Tp coefficients → How to sample from a
NTp(A

−1a,A−1) posterior when inversion and Cholesky operators on A
require O((Tp)3) operations?

• For monthly US data Tp could be more than 100, 000!

• Bhattacharya et al. (2016, Biometrika) provide a simple but clever algorithm
that utilizes Woodbury matrix identity not only to invert A, but also sample
from the Normal distribution

• Worst case algorithmic complexity of O(T 2p)

Korobilis et al. (2021) The time-varying evolution of inflation risks 17/ 39



Background Methodology Simulation study Model evaluation using real data

Fast Sampling from Normal posterior
Assume the following model (ignoring the variance parameter)

y ∼ N(Xβ, σ), likelihood (28)

β ∼ N(0, D), prior (29)

β|y ∼ N(V ×X ′y, V ) posterior (30)

where V = (X ′X +D−1)−1.

Algorithm Bhattacharya et al. (2016) fast sampling of β

i. Sample u ∼ N (0, D) and δ ∼ N (0, IT )
ii. Set v = Xu
iii. Solve (XDX ′ + IT )w = y − v to obtain w
iv. Set β = u+DX ′w

Proof is trivial and relies on application of Woodbury identity
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Time-varying parameter Bayesian quantile regression model: summary
To summarize the TVP-QR model is now

y = Xβ∆(τ) + θ(τ)z(τ) + S̃u, (31)

β∆(τ) ∼ N(0, V (τ)), (32)

Vi,i(τ) = σ(τ)2λ(τ)2ψi(τ)
2, i = 1, ..., Tp,

λ(τ) ∼ Cauchy+ (0, 1) , (33)

ψi(τ) ∼ Cauchy+ (0, 1) , (34)

σ(τ) ∼ IG(ρ1, ρ2), (35)

where S̃ is a T × T diagonal matrix with diagonal element σ(τ)κ(τ)
√
zt(τ).

♣ We can use the Gibbs sampler presented earlier for the linear QR model
♣ As long as β∆(τ) is sampled efficiently using the Bhattacharya et al. (2016,
Biometrika) trick, all other posteriors are scalar and easy to sample from
♣ We sample β∆(τ) but trivial to recover βt (cumsum)
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Quantile noncrossing

• The quantile regression model fits each conditional quantile independently

• In practice neighboring quantiles will correlated

• A typical problem is quantile crossing, i.e. estimated quantile curves Q̂τ (yt|xt)
are not monotonic functions of τ

• A typical solution is to post-process the quantiles → such procedures might
cause some bias

• Here we use the algorithm of Rodrigez and Fan (2017, JCGS) for Bayesian QR

• As long as MCMC draws are independent (use thinning) their noncrossing
procedure ensures monotonicity and posterior consistency
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Quantile noncrossing

Exactly because adjacent quantiles are correlated, use asymmetric Laplace quantile
function to obtain the auxiliary quantile model

Qτ,τ⋆(yt|xt) =


xtβ(τ

⋆) + σ(τ⋆)
1−τ⋆ log

(
τ
τ⋆

)
, if 0 ≤ τ ≤ τ⋆,

xtβ(τ
⋆)− σ(τ⋆)

τ⋆ log
(

1−τ
1−τ⋆

)
, if τ⋆ ≤ τ ≤ 1,

(36)

where Qτ,τ⋆(yt|xt) is the induced quantile, and τ, τ⋆ ∈ {0.05, 0.10, ..., 0.90, 0.95}.
♣ The above gives a 19× 19 Qτ,τ⋆(yt|xt) of quantiles for each MCMC draw
♣ Use a GP regression to obtain a weighted average (over draws, and over 19
auxiliary quantiles)
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Synthetic data experiment

We generate data from the following time-varying regression model

yt = xtβt + εt, (37)

βt = µ+ 0.99(βt−1 − µ) + T− 1
2ut (38)

where x ∼ N(0, I2) is a vector of two artificial predictors, µ ∼ U(−2, 2) is the
long-run mean of βt = [β1,t, β2,t]

′, and ut ∼ N(0, I2).
We artificially shrink all values of β1,t to be zero for t > T/3, that is, the first
predictor is only relevant for y only for the first third of the sample.
The second predictor in the vector x is left unrestricted (i.e. not zero) in all
periods.

→ All that remains is to specify various distributions of εt

Korobilis et al. (2021) The time-varying evolution of inflation risks 23/ 39



Background Methodology Simulation study Model evaluation using real data

Flexible error distributions in DGP

We follow the Monte Carlo design in Yu (2017, JASA), and consider eight different
choices. These are the following:

1. Gaussian: N(0, 12)

2. Skewed : 1/5N(−22/25, 12) + 1/5N(−49/125, (3/2)2) + 3/5N(49/250, (5/9)2)

3. Kurtotic: 2/3N(0, 12) + 1/3N(0, (1/10)2)

4. Outlier : 1/10N(0, 12) + 9/10N(0, (1/10)2)

5. Bimodal : 1/2N(−1, (2/3)2) + 1/2N(1, (2/3)2)

6. Bimodal, separate modes: 1/2N(−3/2, (1/2)2) + 1/2N(3/2, (1/2)2)

7. Skewed bimodal: 3/4N(−43/100, 12) + 1/4N(107/100, (1/3)2)

8. Trimodal: 9/20N(−6/5, (3/5)2) + 9/20N(6/5, (3/5)2) + 1/10N(0, (1/4)2)

This list covers a wide variety of flexible distributions, even though it is far from
exhaustive.
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Monte Carlo evaluation
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Figure: Error distributions generated in the Monte Carlo study: 1) Normal, 2) Skewed, 3)
Kurtotic, 4) Outlier, 5) Bimodal, 6) Bimodal, separate modes, 7) Skewed bimodal, and 8)
Trimodal.
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Monte Carlo evaluation

• We generate 500 datasets of length T = 200 from each of the 8 DGPs

• We fit two models, “mean” TVP regression; quantile TVP regression

• In a Bayesian setting one is a special case of the second (Normal vs
Normal-Exponential errors)

• The precision of estimation βt affects how well we forecast (either mean or
quantiles) so our loss function is

MSDj =
1

500

500∑
r=1

{
1

200

200∑
t=1

[
1

2

2∑
i=1

(
β̂
(j,r)
i,t − βi,t

)2]}
, (39)

where β̂
(j,r)
i,t is j model’s r-th Monte Carlo estimate of coefficient βi,t, i = 1, 2,

t = 1, ..., 200, j = {mean TV P}, {quantile TV P}, r = 1, ..., 500.
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Mean squared deviations (MSDs) of estimated vs true time-varying
parameters, using mean and quantile regressions

DGP1 DGP2 DGP3 DGP4 DGP5 DGP6 DGP7 DGP8

MSD Regression
mean 0.01 0.25 0.04 0.01 0.10 0.21 0.45 1.03

MSD Quantile Regression
τ = 0.05 0.06 0.05 0.05 0.02 0.09 0.13 0.05 0.09
τ = 0.10 0.05 0.05 0.05 0.02 0.09 0.13 0.04 0.08
τ = 0.25 0.05 0.04 0.04 0.01 0.08 0.12 0.03 0.08
τ = 0.50 0.05 0.04 0.04 0.01 0.06 0.11 0.03 0.06
τ = 0.75 0.05 0.04 0.04 0.01 0.07 0.12 0.03 0.07
τ = 0.90 0.05 0.05 0.05 0.02 0.08 0.13 0.04 0.08
τ = 0.95 0.05 0.05 0.05 0.01 0.09 0.13 0.05 0.08
Notes: The mean regression model is a TVP regression with stochastic volatility assuming Normal measurement error

distribution. The quantile regression model allows for time-varying coefficients of predictors and constant intercept and

variance in each quantile.

Korobilis et al. (2021) The time-varying evolution of inflation risks 27/ 39



Background Methodology Simulation study Model evaluation using real data

20 40 60 80 100 120 140 160 180 200

-1

-0.5

0

0.5

1

1.5

2

50 100 150 200

-1

0

1

2

3

50 100 150 200

-1

0

1

2

3

50 100 150 200

0

0.5

1

1.5

2

2.5

3

50 100 150 200

0

0.5

1

1.5

2

2.5

3

50 100 150 200

-1

0

1

2

3

50 100 150 200

-0.5

0

0.5

1

1.5

2

2.5

50 100 150 200

0

0.5

1

1.5

2

2.5

3

50 100 150 200

0

0.5

1

1.5

2

2.5

3

20 40 60 80 100 120 140 160 180 200

0

0.5

1

1.5

2

2.5

3

Figure: Posterior estimates of time-varying parameters (TVPs) estimated using mean (upper panels) and quantile

(middle and bottom panels) regressions. Black lines are the true TVPs, which are the same for both the mean and quantile

regressions. The green lines are the averages (over 100 Monte Carlo iterations) of the estimated posterior means, and the

shaded areas and the 68 percent probability bands.
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Forecasting EA inflation (HICP)

Figure: Core inflation data and quantiles
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Data
VARIABLE FULL DESCRIPTION UNIT SOURCE

HICPCORE HICP - All-items excluding energy and food index Eurostat
LTIE Consensus Long-Term Inflation Expectations 6-10Y percent Consensus
OG Output gap (PC of EC, IMF and OECD estimates) percentage points EC, IMF, OECD
IMPP Relative import prices index Eurostat
M1 M1 nominal stock index ECB
M12GDP M1 to GDP ratio percent ECB
M3 M3 nominal stock index ECB
M32GDP M3 to GDP ratio percent ECB
CRNFPS Credit to the non-fin. priv. sector (NFPS) nom. stock index BIS
CRNFPS2GDP Credit to the NFPS to GDP ratio percent BIS
LONFPS Bank loans to the non-fin. priv. sector (NFPS) nom. stock index BIS
LONFPS2GDP Bank loans to the NFPS to GDP ratio percent BIS
LONFC Bank loans to non-fin. corporations (NFC) nom. stock index ECB
LONFC2GDP Bank loans to NFC to GDP ratio percent ECB
LOHH Bank loans to households (HH) nom. stock index ECB
LOHH2GDP Bank loans to HH to GDP ratio percent ECB
CISS Composite Indicator of Systemic Stress index ECB
STP Dow Jones Euro Stoxx Price Index index ECB
HP Residential property price index index ECB
CRSPR Corporate bond spread (IG-3M Euribor) percentage points ECB
YC Slope of the Yield Curve: 10Y gov. bond yield - 3M Euribor percentage points ECB
LRHHSPR Mortgate lending rate minus 3M Euribor percentage points ECB
LRNFCSPR NFC lending rate minus 3M Euribor percentage points ECB
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Models

We use two classes of models, a dynamic regression

πt+h = ct(τ) + ϕ1t(τ)πt + ϕ2t(τ)πt−1 + βt(τ)xt + εt+h, εt+h ∼ ALD(σt(τ)), (40)

and a semi-structural (Phillips curve) model of the form

πt+h = (1− λt(τ))π
∗
t + λt(τ)π

LTE
t + θt(τ) (yt − y∗t ) + γt(τ)π

I
t + βt(τ)xt + εt+h, (41)

where π∗t is lagged inflation (computed as the average over the previous four
quarters), πLTE

t+h are the long-term inflation expectations (measured using
Consensus 6 to 10 years ahead inflation expectations), (yt − y∗t ) is the output gap
(calculated as the principal component of available estimates), and πIt+h are
relative prices (measured as the spread between import deflator inflation and
domestic inflation).
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Models

πt+h = ct(τ) + ϕ1t(τ)πt + ϕ2t(τ)πt−1 + βt(τ)xt + εt+h, (42)

εt+h ∼ ALD(σt(τ)), (43)

• If σt(τ) = σ(τ) we obtain our proposed class of TVP-QR models

• If τ = 0.5 and zt(τ) =
1

κ(τ)2
= τ(1−τ)

2 then εt+h ∼ Normal(0, σt)

• All TVP can become constant, e.g. if we fix the state variance to be zero

• If xt is the empty set, we can obtain the class of AR models

♣ Similar arguments can be made about the Phillips curve specification
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List of regression-based models
AR(2) is the benchmark. Remaining models are:

1. AR(2) model with TVPs and stochastic volatility (TVP-AR-SV)
2. Time-varying intercept only model with stochastic volatility1 (TVI-SV)
3. Quantile AR(2) with time-varying parameters (TVP-QAR)
4. Quantile regression model with time-varying intercept (TVI-QR)
5. Mean regressions with constant parameters, exogenous predictors, and

stochastic volatility (AR-SV-X)
6. Mean regressions with time-varying parameters, exogenous predictors, and

stochastic volatility (TVP-AR-SV-X)
7. Quantile AR(2) with constant parameters augmented with exogenous

predictors (QAR-X), and
8. Quantile AR(2) with time-varying parameters augmented with exogenous

predictors (TVP-QAR-X)
1This model is similar to the unobserved components stochastic volatility (UCSV) model of

Stock and Watson (2007), although it does not assume stochastic volatility in the equation for
trend inflation.
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List of PC-based models
1. Mean PC regression with stochastic volatility, no additional predictors

(PC-SV)

2. Mean PC regression with time-varying parameters and stochastic volatility, no
additional predictors (TVP-PC-SV)

3. Quantile PC regression, no additional predictors (QPC)

4. Quantile PC regression with time-varying parameters, no additional predictors
(TVP-QPC)

5. Mean PC regression with stochastic volatility, with additional predictors
(PC-SV-X)

6. Mean PC regression with time-varying parameters and stochastic volatility,
with additional predictors (TVP-PC-SV-X)

7. Quantile PC regression, with additional predictors (QPC-X)

8. Quantile PC regression with time-varying parameters, with additional
predictors (TVP-QPC-X)
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Forecast Metrics

• We use two forecast metrics, quantile score (Manzan, 2015, JBES) and
predictive likelihood (e.g. numerous papers by John Geweke)

• The (average) quantile score (QS) is the following loss function:

QSj
h(τ) =

1

Rh

Rh∑
t=1

πt+h − Q̂τ (πt+h|xt)][I{πt+h ≤ Q̂τ (πt+h|xt)}], (44)

where Rh is the length of the forecast evaluation sample.
We evaluate this metric at τ = 0.05, 0.95, and we give the names QScore5,
QScore95.

• All QScore results are relative to an AR(2) benchmark

• We present results for h = 4, 12 quarters ahead forecasts
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Top models, h = 4

Measure Ranking Indicator Specification Score

4-quarters ahead

1st loans to private sector TVP-PC-SV-X 0.891
QScore5 2nd M1/GDP TVP-QAR-X 0.900

3rd house prices TVP-QAR-X 0.900

1st loans to firms TVP-PC-SV-X 0.761
QScore95 2nd loans to private sector TVP-QAR-X 0.767

3rd credit to private sector TVP-QAR-X 0.780

1st M1/GDP TVP-QAR-X 1.474
PL 2nd loans to private sector TVP-QAR-X 1.429

3rd house prices QAR-X 1.383
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Top models, h = 12

Measure Ranking Indicator Specification Score

12-quarters ahead

1st private sector loans/GDP TVP-QAR-X 0.951
QScore5 2nd private sector credit/GDP TVP-QAR-X 0.962

3rd yield curve TVP-QAR-X 0.963

1st loans to households TVP-QPC-X 0.635
QScore95 2nd private sector credit/GDP QAR-X 0.685

3rd loans to households/GDP QAR-X 0.692

1st loans to households TVP-QPC-X 1.552
PL 2nd loans to households QAR-X 1.336

3rd loans to households/GDP QAR-X 1.295
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Thank you!
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