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Motivation

“Linear” Factor Model

Xt
N×1

= Λ Ft
r×1

+ et

Can use F̂ for forecasting (e.g. AR-DI)

”Further forecast improvements will need to come from
models with nonlinearities and/or time variation.”

Stock and Watson 2012

”Nonlinear factor-augmented regression should be considered.”
Cheng and Hansen 2015

X Nonlinear models often dominate their linear counterparts:
Giovannetti 2013, Kim and Swanson 2014, Coulombe et al. 2019.

This paper: Nonlinearization via the kernel method.

Varlam Kutateladze Paper Tasting Session 2 / 7



Motivation

“Linear” Factor Model

Xt
N×1

= Λ Ft
r×1

+ et

Can use F̂ for forecasting (e.g. AR-DI)

”Further forecast improvements will need to come from
models with nonlinearities and/or time variation.”

Stock and Watson 2012

”Nonlinear factor-augmented regression should be considered.”
Cheng and Hansen 2015

X Nonlinear models often dominate their linear counterparts:
Giovannetti 2013, Kim and Swanson 2014, Coulombe et al. 2019.

This paper: Nonlinearization via the kernel method.

Varlam Kutateladze Paper Tasting Session 2 / 7



Motivation

“Linear” Factor Model

Xt
N×1

= Λ Ft
r×1

+ et

Can use F̂ for forecasting (e.g. AR-DI)

”Further forecast improvements will need to come from
models with nonlinearities and/or time variation.”

Stock and Watson 2012

”Nonlinear factor-augmented regression should be considered.”
Cheng and Hansen 2015

X Nonlinear models often dominate their linear counterparts:
Giovannetti 2013, Kim and Swanson 2014, Coulombe et al. 2019.

This paper: Nonlinearization via the kernel method.

Varlam Kutateladze Paper Tasting Session 2 / 7



Motivation

“Linear” Factor Model

Xt
N×1

= Λ Ft
r×1

+ et

Can use F̂ for forecasting (e.g. AR-DI)

”Further forecast improvements will need to come from
models with nonlinearities and/or time variation.”

Stock and Watson 2012

”Nonlinear factor-augmented regression should be considered.”
Cheng and Hansen 2015

X Nonlinear models often dominate their linear counterparts:
Giovannetti 2013, Kim and Swanson 2014, Coulombe et al. 2019.

This paper: Nonlinearization via the kernel method.

Varlam Kutateladze Paper Tasting Session 2 / 7



Kernel trick

Idea: Implicit nonlinearization of inputs ϕ(·) : X → F (RN → RM).

How: Substitute 〈xi , xj〉 with 〈ϕ(xi ), ϕ(xj)〉 = k(xi , xj),

e.g. k(xi, xj) = e−γ‖xi−xj‖2

“Nonlinear” Factor Model

ϕ(Xt)
M×1

= Λ Ft
r×1

+ et

where ϕ(·) is very flexible and high-dimensional

Kernel factors =⇒ F̂ϕ
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Interesting Results

Proposition 1 (Simplified)

Kernel factors and factors by Connor and Korajczyk 1993 when
nonlinearized have identical column spaces.

Proposition 2 (Simplified)

Kernel factors can nest linear (PCA) factors.

X1

X2

X3

Input

ϕ(X1)

ϕ(X2)

ϕ(X3)

Transformation

k(X1, ·)

k(X2, ·)

k(X3, ·)

Hidden

F̂
[1]
ϕ

F̂
[2]
ϕ

Output

Figure 2: Neural network interpretation of kernel PCA, illustrated for the case T = 3,
r = 2. Each observation is nonlinearly transformed and the inner products are computed.
The output units are kernel factors with F̂

[j]
ϕ =

∑T
i=1 α

[j]
i k(Xi, ·) which linearly combine

these dot products, with the weight estimate calculated as the eigenvector of the kernel
matrix K.

2.4 Theory

Depending on the choice of the kernel, the induced feature space could be either finite

or infinite. A polynomial kernel considered earlier generates a finite-dimensional feature

space, consisting of a set of polynomial functions over the inputs. In this simple case, the

eigenspace associated with the kernel factor estimator in equation (12) can generally be

consistently estimated within the framework of Bai [2003]. Particularly, proposition 2.1

and the following theorem in Bai [2003] immediately imply
√
M -consistency of F̃ϕ.

For the model associated with equation (6):

Assumption A: There exists a constant c1 <∞ independent of M and T , such that

(a) E ‖Fϕ,t‖4
F ≤ c1 and T−1F ′ϕFϕ

p→ ΣF > 0, where ΣF is a non-random positive

definite matrix;

(b) E ‖Λϕ,i·‖F ≤ c1 and N−1Λ′ϕΛϕ
p→ ΣΛ > 0, where ΣΛ is a non-random positive

definite matrix.

(c1) E(eϕ,it) = 0, E |eϕ,it|8 ≤ c1;

(c2) E(e′ϕ,seϕ,t/M) = γM(s, t), |γM(s, s)| ≤ c1 ∀s, T−1
∑T

s=1

∑T
t=1 |γM(s, t)| ≤ c1,

∑T
s=1 γM(s, t)2 ≤M ∀t, T ;

(c3) E(eϕ,iteϕ,jt) = τij,t with |τij,t| ≤ |τij| for some τij and ∀t; and M−1
∑M

i=1

∑M
j=1

|τij| ≤ c1;

(c4) E(eϕ,iteϕ,js) = τij,ts, (MT )−1
∑M

i=1

∑M
j=1

∑T
t=1

∑T
s=1 |τij,ts| ≤ c1;

12

Figure 1: Neural network interpretation
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Interesting Results

High-dimensional approximate static factor model

Theorem 1 (Very simplified)

Consistent estimation is possible for kernels with M <∞

Theorem 2 (Very simplified)

Consistent estimation is possible for kernels with M =∞
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Interesting Results

Forecasting application:

McCracken and Ng 2016 dataset, 1959:01 to 2020:04

8 variables to forecast at h = 1, 3, 6, 9, 12, 18, 24

Competing models:

AR-DI with PCA factors (Stock and Watson 2002)
AR-DI with SPCA factors (Bai and Ng 2008)
AR-DI with PC2 factors (Bai and Ng 2008)
AR-DI with different kernel factors

Main result:

Kernel-based approach generally outperforms the competition, es-
pecially at mid to long horizons
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Main Takeaways

Constructing factor estimates nonlinearly can be beneficial
forecasting

Nesting of linear factor estimator

Connection with neural networks

Consistency

Good empirical performance
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