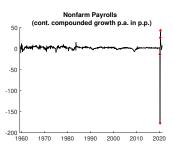
Addressing COVID-19 Outliers in BVARs with Stochastic Volatility

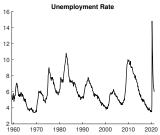
Andrea Carriero¹ Todd E. Clark² Massimiliano Marcellino³ Elmar Mertens⁴

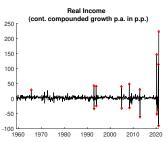
¹Queen Mary University of London, ²Federal Reserve Bank of Cleveland, ³Bocconi University, IGIER and CEPR, ⁴Deutsche Bundesbank

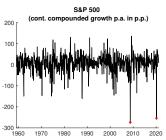
11th European Central Bank Conference on Forecasting Techniques

15 June 2021

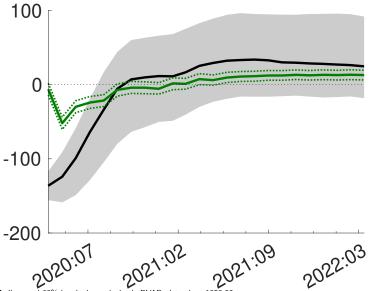

The results presented here do not necessarily represent the views of the Federal Reserve Bank of Cleveland, the Federal Reserve System, the Deutsche Bundesbank, the Eurosystem, or their respective staffs.


RESEARCH AGENDA


How to make VARs work in turbulent times?


Extreme realizations since March 2020 lead to ...

- strong effects on parameter estimates
- implausible predictions in constant-variance VARs
- in terms of point and density forecasts



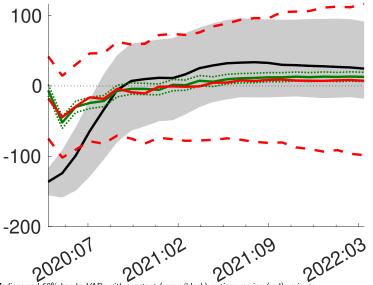
Red diamonds: outliers more than five times the IQR away from median

parameters from data through Feb (green) or Apr 2020 (black)

Medians and 68% bands, homoskedastic BVAR, data since 1959:03

COVID-19 OUTLIERS AS HIGH-VARIANCE EVENTS

- Some suggest to omit COVID-19 obs from VAR estimation (Schorfheide & Song, 2020)
- ... or to place less weight on COVID-19 data in parameter estimation (Lenza & Primiceri, 2020)


COVID-19 OUTLIERS AS HIGH-VARIANCE EVENTS

- Some suggest to omit COVID-19 obs from VAR estimation (Schorfheide & Song, 2020)
- ... or to place less weight on COVID-19 data in parameter estimation (Lenza & Primiceri, 2020)
- Indeed, this is what VARs with SV would do: down-weight obs with larger variance of residuals

COVID-19 OUTLIERS AS HIGH-VARIANCE EVENTS

- Some suggest to omit COVID-19 obs from VAR estimation (Schorfheide & Song, 2020)
- ... or to place less weight on COVID-19 data in parameter estimation (Lenza & Primiceri, 2020)
- Indeed, this is what VARs with SV would do: down-weight obs with larger variance of residuals
- But, conventional VAR-SV models assume changes in volatility to be highly persistent
- ... with strong effects on projected uncertainty

parameters from data through Feb (green) or Apr 2020 (black), SV (red)

Medians and 68% bands, VARs with constant (green/black) or time-varying (red) variance

RESEARCH AGENDA AND CONTRIBUTIONS

How to make VARs work in turbulent times?

Extreme realizations since March 2020 lead to ...

- strong effects on parameter estimates
- implausible predictions in constant-variance VARs
- in terms of point and density forecasts

We develop approaches with random outliers in SV

- Outliers seen as fast, but transitory changes in SV
- Random outliers are part of the DGP and its predictions

RESEARCH AGENDA AND CONTRIBUTIONS

How to make VARs work in turbulent times?

Extreme realizations since March 2020 lead to ...

- strong effects on parameter estimates
- implausible predictions in constant-variance VARs
- in terms of point and density forecasts

We develop approaches with random outliers in SV

- Outliers seen as fast, but transitory changes in SV
- Random outliers are part of the DGP and its predictions

We also consider simple options for known outliers

- Exogenously "known" outliers
- Not modeled, not part of the DGP
- Treated with dummies, or missing-data approach

RELATED LITERATURE

Extreme data, outliers, and fat tails

- Lenza & Primiceri (2020), Schorfheide & Song (2020), Bobeica & Hartwig (2021)
- Huber, Koop, Onorante, Pfarrhofer, & Schreiner (2020),
 Guerrón-Quintana & Zhong (2020), Mitchell & Weale (2021)
- Karlsson & Mazur (2020), Jacquier, Polson, & Rossi (2004), Cúrdia, Del Negro & Greenwald (2014), Clark & Ravazzolo (2015)
- Stock & Watson (2002, 2016), Breitung & Eickmeier (2011) Artis, Banerjee, & Marcellino (2005)

BVARS with stochastic volatility

- Cogley & Sargent (2005), Primiceri (2005)
 - Carriero, Clark, & Marcellino (2019) Carriero, Chan, Clark, & Marcellino (2021)

AGENDA

- BVAR models and extreme observations
- Porecast performance pre COVID
- 3 Forecasts since spring 2020
- 4 Robustness
- Conclusion
- (Appendix)

Dynamic model for the vector y_t

$$y_t = \Pi_0 + \Pi(L) y_{t-1} + v_t, \qquad E_{t-1} v_t = 0$$

CONST:
$$v_t = \Sigma^{0.5} arepsilon_t \, , \qquad \qquad arepsilon_t \sim N(0,I)$$

Dynamic model for the vector y_t

$$y_t = \Pi_0 + \Pi(L) y_{t-1} + v_t, \qquad E_{t-1} v_t = 0$$

CONST:
$$v_t = \Sigma^{0.5} arepsilon_t \,, \qquad arepsilon_t \sim N(0,I)$$
 SV: $v_t = A^{-1} \, \Lambda_t^{0.5} arepsilon_t \,, \qquad \log oldsymbol{\lambda_{j,t}} \sim RW$

$$A^{-1}$$
 lower unit-triangular, Λ_t diagonal

Dynamic model for the vector y_t

$$y_t = \Pi_0 + \Pi(L) y_{t-1} + v_t, \qquad E_{t-1} v_t = 0$$

$$egin{aligned} \mathsf{CONST:} & v_t = \Sigma^{0.5} arepsilon_t \,, & arepsilon_t \sim N(0,I) \ & \mathsf{SV:} & v_t = A^{-1} \, \Lambda_t^{0.5} arepsilon_t \,, & \log \lambda_{j,t} \sim RW \ & v_t = A^{-1} \, \Lambda_t^{0.5} oldsymbol{O}_t \, arepsilon_t \,, & oldsymbol{o}_{j,t} \sim iid \end{aligned}$$

Dynamic model for the vector y_t

$$y_t = \Pi_0 + \Pi(L)y_{t-1} + v_t, \qquad E_{t-1}v_t = 0$$

CONST:
$$v_t = \Sigma^{0.5} arepsilon_t \,, \qquad arepsilon_t \sim N(0,I)$$
 SV: $v_t = A^{-1} \, \Lambda_t^{0.5} arepsilon_t \,, \qquad \log \lambda_{j,t} \sim RW$ SVO: $v_t = A^{-1} \, \Lambda_t^{0.5} O_t \, arepsilon_t \,, \qquad o_{j,t} \sim iid$

$$o_{j,t} \sim egin{cases} 1 & ext{with prob.} & 1-p_j \ U(2,20) & ext{with prob.} & p_j \end{cases}$$

$$A^{-1}$$
 lower unit-triangular, Λ_t , O_t diagonal

Dynamic model for the vector y_t

$$y_t = \Pi_0 + \Pi(L)y_{t-1} + v_t, \qquad E_{t-1}v_t = 0$$

CONST:
$$v_t = \Sigma^{0.5} arepsilon_t$$
 , $arepsilon_t \sim N(0,I)$

SV:
$$v_t = A^{-1} \, \Lambda_t^{0.5} arepsilon_t \,, \qquad \log \lambda_{j,t} \sim RW$$
SVO-t: $v_t = A^{-1} \, \Lambda_t^{0.5} O_t \, Q_t \, arepsilon_t \,, \qquad o_{j,t}, q_{j,t} \sim iid$
 $q_{j,t} \sim \sqrt{IG\left(rac{
u_j}{2}, rac{
u_j}{2}
ight)}$

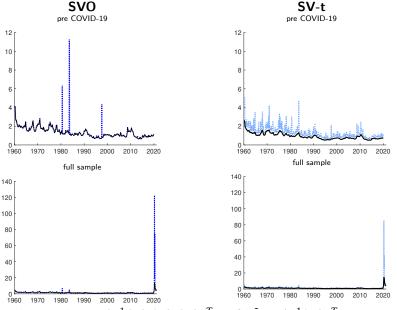
$$o_{j,t} \sim egin{cases} 1 & ext{with prob.} & 1-p_j \ U(2,20) & ext{with prob.} & p_j \end{cases}$$

Dynamic model for the vector y_t

$$y_t = \Pi_0 + \Pi(L) y_{t-1} + v_t, \qquad E_{t-1} v_t = 0$$

We consider the following variants:

CONST:
$$v_t = \Sigma^{0.5} arepsilon_t$$
 , $arepsilon_t \sim N(0,I)$ SV: $v_t = A^{-1} \, \Lambda_t^{0.5} arepsilon_t$, $\log \lambda_{j,t} \sim RW$


SVO-t:
$$v_t = A^{-1} \, \Lambda_t^{0.5} O_t \, Q_t \, arepsilon_t \, , \quad o_{j,t}, q_{j,t} \sim iid$$
 $q_{j,t} \sim \sqrt{IG\left(rac{
u_j}{2}, rac{
u_j}{2}
ight)}$

$$o_{j,t} \sim egin{cases} 1 & ext{with prob.} & 1-p_j \ U(2,20) & ext{with prob.} & p_j \end{cases}$$
 O_t can have more mass on large outliers than Q_t

 O_t can have more mass on large outliers than A^{-1} lower unit-triangular, Λ_t , O_t , and Q_t diagonal

FORECAST ERROR VOL DECOMPOSITION PAYROLL GROWTH

Total Σ_t incl. outliers (colored), pure SV component $\tilde{\Sigma}_t$ (black)

Note: Medians. Total: $\Sigma_t = A^{-1}O_tQ_t\Lambda_tQ_tO_tA^{-T}$, pure SV: $\tilde{\Sigma}_t = A^{-1}\Lambda_tA^{-T}$

SIMPLE ALTERNATIVES TO TREAT KNOWN OUTLIERS

Two options when outlier events can be identified prior to estimation \dots

1) Generic missing-data approach (SV-OutMiss)

- Pre-screen data for outliers, based on historical norms (e.g. distance from median; similar to DFM literature)
- VAR-SV with data augmentation for missing values
- Past outliers taken as given, no future outliers anticipated
- ullet Ignores outlier effects not only in estimation of Π but also in jump-off vector y_t for $E_t(y_{t+h}) = \Pi^h y_t$

SIMPLE ALTERNATIVES TO TREAT KNOWN OUTLIERS

Two options when outlier events can be identified prior to estimation ...

1) Generic missing-data approach (SV-OutMiss)

- Pre-screen data for outliers, based on historical norms (e.g. distance from median; similar to DFM literature)
- VAR-SV with data augmentation for missing values
- Past outliers taken as given, no future outliers anticipated
- ullet Ignores outlier effects not only in estimation of Π but also in jump-off vector y_t for $E_t(y_{t+h})=\Pi^h y_t$

2) COVID-19 dummies

(SV-Dummy)

- COVID-19 generated wild swings in various months
- Separate dummies for March 2020 to March 2021
- Otherwise standard VAR-SV with wide priors on dummies (to soak up COVID data)

AGENDA

- BVAR models and extreme observations
- 2 Forecast performance pre COVID
- 3 Forecasts since spring 2020
- 4 Robustness
- Conclusion
- 6 (Appendix)

SETUP OF OUR FORECAST COMPARISONS

BVAR estimation

- Non-conjugate priors (Minnesota-style shrinkage of Π)
- MCMC estimation with corrected triangular scheme of CCM19/CCCM21 to handle SV in larger systems
- Re-estimated for each forecast origin

Quasi real-time setup

- 16 variables; all data from FRED-MD 2021 April vintage
- Monthly observations since 1959:03
- Growing estimation windows
- ullet Forecasts up to two years out (h=24)

Evaluation window 1985:01 – 2017:12 to ignore 2020 realizations

Transformation

BACKUP

RW Prior

yes

Variable

Baa spread

DAIA SEI					
Monthly obs from	1959:03 to	2021:03;	FRED-MD	vintage 2021:0	4

Real Income	RPI	$\Delta \log(x_t) \cdot 1200$	
Real Consumption Exp.	DPCERA3M086SBEA	$\Delta \log(x_t) \cdot 1200$	
IP	INDPRO	$\Delta \log(x_t) \cdot 1200$	
Capacity Utilization	CUMFNS		yes
Unemployment Rate	UNRATE		yes
Nonfarm payrolls	PAYEMS	$\Delta \log(x_t) \cdot 1200$	-
Hours	CES0600000007	- , ,	
Hourly Earnings	CES0600000008	$\Delta \log(x_t) \cdot 1200$	
PPI: Finished Goods	WPSFD49207	$\Delta \log(x_t) \cdot 1200$	yes
PCE prices	PCEPI	$\Delta \log(x_t) \cdot 1200$	yes
Housing Starts	HOUST	$\log(x_t)$	yes
SP500	SP500	$\Delta \log(x_t) \cdot 1200$	
U.S. / U.K. Forex	EXUSUKx	$\Delta \log(x_t) \cdot 1200$	
5-Year yield	GS5		yes
10-Year yield	GS10		yes

BAAFFM

Note: Interest-rate densities are dynamically censored at ELB

FRED-MD code

Values below one indicate improvement over SV SVO + SV OutMice

	SVO-t			SV-OutMiss			
Variable / Horizon	3	12	24	3	12	24	
Real Income	1.00	1.01**	0.93*				
Real Consumption	1.00	1.00	1.01				
IP	0.99	1.00	0.96***				
Capacity Utilization	0.99	1.00	0.97				
Unemployment Rate	0.99	0.99	0.99				
Nonfarm Payrolls	1.00	1.01	0.98				
Hours	1.00	0.99	1.00				
Hourly Earnings	1.00	1.01**	1.03*				
PPI (Fin. Goods)	0.99	1.00	1.00				
PCE Prices	1.00	1.01	1.03*				
Housing Starts	0.99	0.99	1.03***				
S&P 500	1.00	1.00	1.01**				
USD / GBP FX Rate	1.00	1.00	0.86				
5-Year yield	1.00	1.01	0.97				
10-Year yield	1.00	1.01	0.98				
Baa Spread	0.99	0.99	0.97				

Values below one indicate improvement over SV

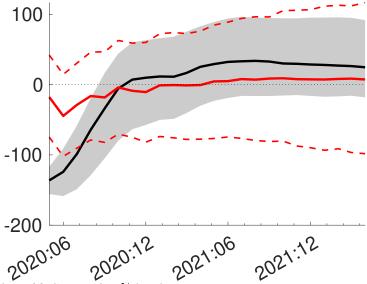
	SVO-t			SV-OutMiss			
Variable / Horizon	3	12	24	3	12	24	
Real Income	1.00	1.01**	0.93*	1.00	1.01	0.94	
Real Consumption	1.00	1.00	1.01	0.99	1.00	1.00	
IP	0.99	1.00	0.96***	1.00	0.99	0.98^{*}	
Capacity Utilization	0.99	1.00	0.97	1.02	0.98	0.97	
Unemployment Rate	0.99	0.99	0.99	1.00	0.99^{*}	1.00	
Nonfarm Payrolls	1.00	1.01	0.98	1.00	0.99	0.98	
Hours	1.00	0.99	1.00	1.01	1.00	1.01	
Hourly Earnings	1.00	1.01**	1.03*	1.00	1.00	1.00	
PPI (Fin. Goods)	0.99	1.00	1.00	1.00	1.00	1.00	
PCE Prices	1.00	1.01	1.03*	0.99	1.02**	1.02	
Housing Starts	0.99	0.99	1.03***	1.00	0.99	1.00	
S&P 500	1.00	1.00	1.01**	1.00	1.00	1.01	
USD / GBP FX Rate	1.00	1.00	0.86	0.99*	1.00	0.84	
5-Year yield	1.00	1.01	0.97	0.99*	1.00	0.96	
10-Year yield	1.00	1.01	0.98	0.99	1.00	0.98	
Baa Spread	0.99	0.99	0.97	0.99	0.99^{*}	1.01	

Values below one indicate improvement over SV

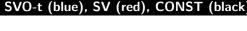
	SVO-t			SV-OutMiss			
Variable / Horizon	3	12	24	3	12	24	
Real Income	0.96***	0.94***	0.86***	0.94***	0.94***	0.87**	
Real Consumption	0.99	0.97^{***}	0.91***	0.98*	0.98***	0.94**	
IP	0.99*	0.96***	0.90***	1.01	0.98***	0.96**	
Capacity Utilization	0.99	1.00	0.96	1.01	0.99	0.96**	
Unemployment Rate	1.00	1.01	1.00	0.99	0.99	0.99	
Nonfarm Payrolls	1.00	0.98*	0.93***	0.99	0.98**	0.96**	
Hours	0.99	0.98*	0.92***	1.01	0.99	0.97^{**}	
Hourly Earnings	0.99**	0.98***	0.93***	1.00	0.99**	0.97**	
PPI (Fin. Goods)	0.99*	0.98***	0.95***	0.99	0.99**	0.97**	
PCE Prices	1.00	1.00	0.98***	0.99**	0.99	0.97**	
Housing Starts	1.00	1.01	1.01^{*}	1.00	0.99	0.99	
S&P 500	0.99**	0.97^{***}	0.92***	0.99	0.98***	0.96**	
USD / GBP FX Rate	0.99*	0.97***	0.92***	0.99**	0.97**	0.93**	
5-Year yield	1.00	1.01*	1.01	0.99	1.00	0.99*	
10-Year yield	1.01	1.01	1.01*	1.00	1.00	0.99	
Baa Spread	0.99	0.99	0.97^{**}	0.98*	0.98**	0.98^{*}	

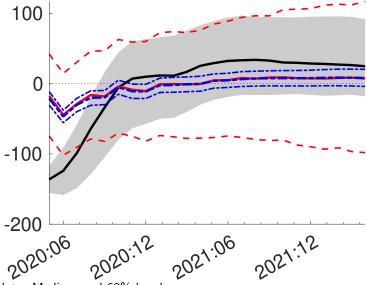
TAKE AWAYS: FORECAST PERFORMANCE PRIOR 2020

Evaluating the out-of-sample forecast with origins from 1985–2017 \dots

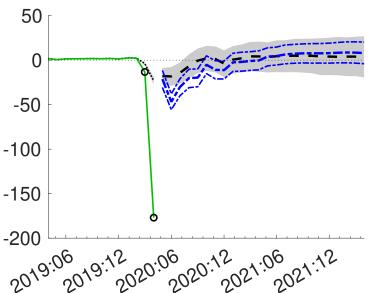

Across variables forecast horizons, we typically find:

- SVO-t did as well as, if not better, than SV
- SV outperformed the CONST benchmark (see paper)
- SV-Outmiss performed similar to SVO-t

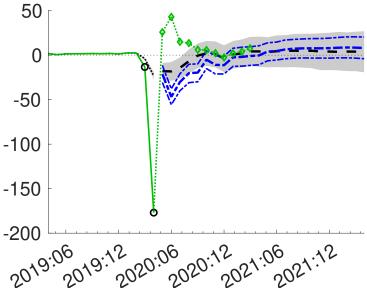

Outlier-adjusted SV helpful for outlier-prone variables while not hurting otherwise, and similarly so for missing-data treatment


AGENDA

- BVAR models and extreme observations
- 2 Forecast performance pre COVID
- **3** Forecasts since spring 2020
- 4 Robustness
- **5** Conclusion
- 6 (Appendix)



Note: Medians and 68% bands



Note: Medians and 68% bands

Note: Medians and 68% bands. Circles: Pre-identified outlier data

SV-Dummies (purple), SVO-t (blue), SV-OutMiss (black), realized (green)

Note: Medians and 68% bands. Circles: Pre-identified outlier data

FORECAST PERFORMANCE 2020:03 – 2021:02

Typically, across all 16 variables ...

Point forecasts

- Very similar: for all of our SV variants (SV, SVO-t, SV-Dummy)
- Some differences compared to SV-Outmiss, which proved more accurate so far (RMSE, for h ≤ 6)

Predictive densities

- SV: very wide
- SV-Dummy: extremely tight
- SVO-t and SV-OutMiss: in between
- Some advantage of SVO-t over SV, (CRPS $h \le 6$) with SV-Outmiss at least as strong

FORECAST PERFORMANCE 2020:03 – 2021:02

Typically, across all 16 variables . . .

Point forecasts

- Very similar: for all of our SV variants (SV, SVO-t, SV-Dummy)
- Some differences compared to SV-Outmiss, which proved more accurate so far (RMSE, for $h \le 6$)

Predictive densities

- SV: very wide
- SV-Dummy: extremely tight
- SVO-t and SV-OutMiss: in between
- Some advantage of SVO-t over SV, (CRPS $h \le 6$) with SV-Outmiss at least as strong

FORECAST PERFORMANCE 2020:03 - 2021:02

Typically, across all 16 variables ...

Point forecasts

- Very similar: for all of our SV variants (SV, SVO-t, SV-Dummy)
- Some differences compared to SV-Outmiss, which proved more accurate so far (RMSE, for $h \le 6$)

Predictive densities

- SV: very wide
- SV-Dummy: extremely tight
- SVO-t and SV-OutMiss: in between
- Some advantage of SVO-t over SV, (CRPS $h \le 6$) with SV-Outmiss at least as strong

Caveat: Only few realizations observed so far

AGENDA

- BVAR models and extreme observations
- 2 Forecast performance pre COVID
- 3 Forecasts since spring 2020
- 4 Robustness
- 5 Conclusion
- (Appendix)

ROBUSTNESS

In paper and appendices we also consider ...

Variants of outlier-adjusted SV: SVO and SV-t

- Close performance, on average, in the pre-2020 sample for point and density forecasts
- SVO a little weaker than SVO-t at longer horizons, and SV-t quite close to SVO-t

Common vs variable-specific outliers

ullet Common outlier posits one scalar factor, o_t , that simultaneously scales all variables up or down

$$v_t = o_t \cdot A^{-1} \Lambda_t^{0.5} arepsilon_t \qquad \qquad arepsilon_t \sim N(0,I)$$

- Maybe ok for tightly selected variables during COVID-19
- Less plausible for broader set of variables

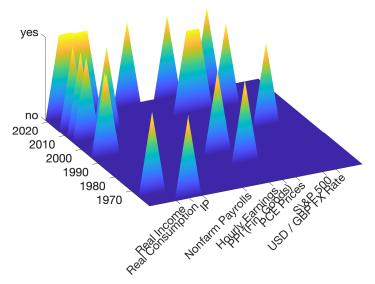
AGENDA

- BVAR models and extreme observations
- 2 Forecast performance pre COVID
- 3 Forecasts since spring 2020
- 4 Robustness
- Conclusion
- (Appendix)

CONCLUSIONS

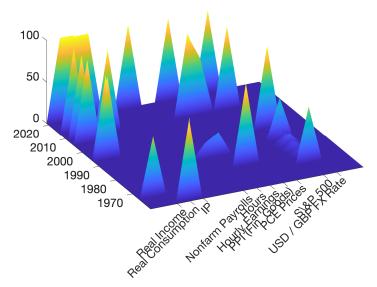
Benefits of outlier-adjusted SV in BVARs

- Detects outliers as random, not known, events
- Delineates transitory spikes from persistent changes in SV
- Pre-COVID-19: a little better, no worse than regular SV
- Since COVID-19: more plausible forecast densities


Alternative: missing-data approach

- Require outliers to be known/identified ex-ante
- Outliers not modeled, densities assume standard VAR-SV
- Robust performance

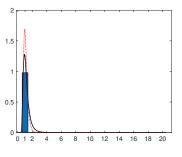
Makes BVARs work through turbulent times

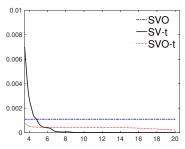

- Outliers in post-war data
- Specification of SVO vs SV-t models
- Individual vs common outliers
- Payroll forecasts in 2020/2021
- Forecast errors since COVID-19

Occurrence of observations more than 5 times the IQR away from median

Measured over full sample of monthly data 1959:03-2021:03. Later we use growing samples in quasi-real time.

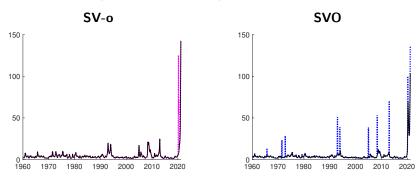
Odds of observations counted as outlier in growing samples starting 1985


Occurrence of observations more than 5 times the IQR away from median

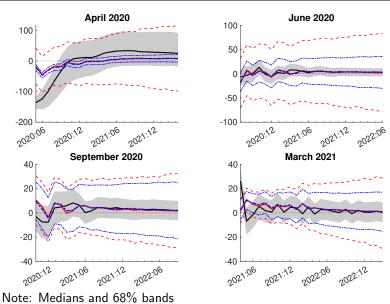

- Outliers in post-war data
- Specification of SVO vs SV-t models
- Individual vs common outliers
- Payroll forecasts in 2020/2021
- Forecast errors since COVID-19

o_t can place more mass on large outliers than q_t

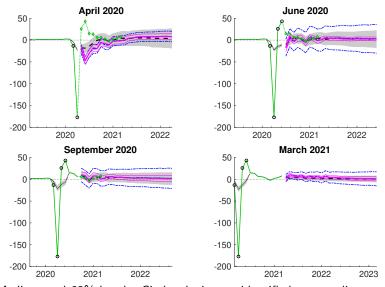
- SVO prior sees 1 outlier every 4 years
- For SVO-t: prior mean lowered to 1 outlier every 10 years
- Here: SV-t and SVO-t calibrated to same variance as SVO (will be estimated in our empirical application)


- Outliers in post-war data
- Specification of SVO vs SV-t models
- Individual vs common outliers
- Payroll forecasts in 2020/2021
- Forecast errors since COVID-19

ullet Common outlier posits one scalar factor, o_t , that simultaneously scales all variables up or down


$$v_t = o_t \cdot A^{-1} \Lambda_t^{0.5} arepsilon_t \qquad \qquad arepsilon_t \sim N(0,I)$$

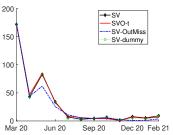
- Maybe ok for selected variables during COVID-19
- Less plausible for broader set of variables
- For example, FE vol decomposition for real income:


- Outliers in post-war data
- Specification of SVO vs SV-t models
- Individual vs common outliers
- Payroll forecasts in 2020/2021
- Forecast errors since COVID-19

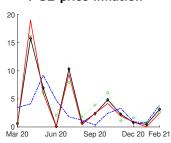
PAYROLL GROWTH FORECASTS SVO-t (blue), SV (red), CONST (black)

PAYROLL GROWTH FORECASTS W/KNOWN OUTLIERS

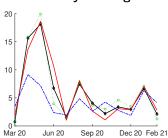
SV-Dummies (magenta), SVO-t (blue), SV-OutMiss (black), realized

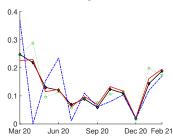


Medians and 68% bands. Circles depict pre-identified past outliers


- Outliers in post-war data
- Specification of SVO vs SV-t models
- Individual vs common outliers
- Payroll forecasts in 2020/2021
- Forecast errors since COVID-19

Absolute errors of one-step ahead forecasts made March 2020 to Feb 2021


Payroll growth


PCE price inflation

Hourly Earnings

Housing starts

CONCLUSIONS

Benefits of outlier-adjusted SV in BVARs

- Detects outliers as random, not known, events
- Delineates transitory spikes from persistent changes in SV
- Pre-COVID-19: a little better, no worse than regular SV
- Since COVID-19: more plausible forecast densities

Alternative: missing-data approach

- Require outliers to be known/identified ex-ante
- Outliers not modeled, densities assume standard VAR-SV
- Robust performance

Makes BVARs work through turbulent times