Money and Spending Multipliers with HA-IO

Elisa Rubbo

University of Chicago

October 6, 2021

Beyond representative agent, one sector

- Heterogeneous agents + input-output network
- workers consume different bundles of goods
- firms hire different bundles of workers (+ fixed factors)
- Heterogeneous nominal and real rigidities
- sticky wage, work for sticky sector...
- employer (or his customers...) relies on fixed factors
- more or less elastic labor supply
- New questions:
- how does policy redistribute across agents?
- aggregate response to policy same as with rep agent?

Money multiplier

$$
\left(\mathbb{L}_{M}\right)_{h}=\frac{\partial \log I_{h}}{\partial \log M}
$$

- Cross section:
- nominal rigidity \uparrow, real rigidity $\downarrow \Longleftrightarrow$ price volatility \downarrow, employment volatility \uparrow
- Aggregate
- substitute towards agents with more nominal rigidity / less real rigidity \rightarrow more non-neutrality

Spending multiplier

$$
\left(\mathbb{L}_{G}\right)_{h i}=\frac{\partial \log I_{h}}{\partial \log G_{i}}
$$

- Spending affects relative demand for different workers
- direct towards agents with more nominal rigidity / less real rigidity \rightarrow larger multiplier
- replicate aggregate consumption \rightarrow "as if" rep agent
- flex prices, no fixed factors, uniform labor supply elasticity \rightarrow composition irrelevant for aggregate employment

Literature

HA-IO: Baqaee and Farhi (2018), Flynn, Patterson, Sturm (2020)
Monetary/fiscal policy with heterogeneous agents:
HANK: Werning (2015), Guerrieri and Lorenzoni (2017), Kaplan, Moll, Violante (2018), Auclert (2019), Auclert, Ronglie, Straub (2019); open economy: Benigno (2004), Gali and Monacelli (2008), Engel (2011), Huang and Liu (2005)

Monetary policy with input-output:
analytical: Basu (1995), Erceg et al (1999), Aoki (2001), Woodford (2003), Blanchard and Gali (2007); quantitative: Carvalho (2006), Klenow and Kryvtsov (2008), Nakamura and Steinsson (2008, 2013), Carvalho and Nechio (2011), Bouakez, Cardia, and Ruge-Murcia (2014), Pasten, Schoenle and Weber (2016, 2017), Castro Cienfuegos (2019), Höynk (2019)

Spending multipliers: Bouakez, Rachedi, Santoro (2020), Cox, Muller, Pasten, Schoenle, Weber (2020)

Cross-sectional estimation: Nakamura and Steinnson (2014), Beraja, Hurst, Ospina (2016), Chodorow-Reich (2019), Auerbach, Gorodnichenko, Murphy (2019), Dupor, Karabarbounis, Kudlyak, Mehkari (2019), McLeay and Tenreyro (2018), Levy (2018), Hooper, Mishkin, Sufi (2019), Hazell, Herreno, Nakamura and Steinnson (2020)

Roadmap

- Setup
- Demand \& supply blocks at high level
- general expression for multipliers
- "as if" results
- Specific structural model
- break "as if" results
- examples for intuition

Outline

Setup

Multipliers

Examples

Empirics

Conclusion

Environment

- H worker types, K fixed factors, N production sectors
- Agents
- consume different bundles of goods
- own different shares of sectors and fixed factors
- have different wage rigidity and labor supply elasticity
- Sectors
- hire different bundles of workers and fixed factors
- have different position in the input-output network
- have different price rigidity and demand elasticity
- Log-linearized model
- evolution described by measurable steady-state shares and elasticities

Consumers

- Type-h preferences:

$$
\frac{C_{h}\left(x_{1}, \ldots, x_{N}\right)^{1-\gamma_{h}}}{1-\gamma_{h}}-\frac{L_{h}^{1+\varphi_{h}}}{1+\varphi_{h}}
$$

- Parameters:
- wealth effects: $\Gamma \equiv \operatorname{diag}\left(\gamma_{1}, \ldots, \gamma_{H}\right)$
- Frish elasticities: $\Phi \equiv \operatorname{diag}\left(\varphi_{1}, \ldots, \varphi_{H}\right)$
- consumption shares $\beta=\left(\beta_{i, h}\right)$

Consumers

- Type-h budget constraint:

$$
P_{h} C_{h}=\underbrace{W_{h} L_{h}}_{\text {labor }}+\underbrace{\sum_{k} \mathcal{Z}_{k h} R_{k} K_{k}}_{\text {fixed factors }}+\underbrace{\sum_{i} \Theta_{i h} \Pi_{i}}_{\text {profits }}-\underbrace{T_{j}}_{\text {lump-sum tax }}
$$

- Factor income shares:

$$
\varsigma_{h} \equiv \frac{W_{h} L_{h}}{G D P}, \varsigma_{k} \equiv \frac{R_{k} K_{k}}{G D P}
$$

- Agents' income shares:

$$
s_{h} \equiv \frac{P_{h} C_{h}}{G D P}=\varsigma_{h}+\sum_{j} \mathcal{Z}_{k h \varsigma_{k}}
$$

Producers

- CRS sectoral production functions:

Hicks-neutral shifter

- Factor shares $\alpha=\left(\begin{array}{ll}\alpha_{i h} & \alpha_{i k}\end{array}\right)$, input shares $\Omega=\Omega_{i j}$
- Domar weights: $\lambda^{T} \equiv \beta^{T}(I-\Omega)^{-1}$
- Elasticities of substitution

Producers

- Continuum of firms within sectors, CES bundle
- fraction δ_{i} of producers adjust price after seeing A
- notation: $\Delta=\operatorname{diag}\left(\delta_{1} \ldots \delta_{N}\right)$
- Sticky wages: add labor unions with sticky price
- Optimal input subsidies $\left(\tau_{i}\right)$, log-linearize around efficient equilibrium

Policy instruments

- Government spending: $G=\left(G_{1} \ldots G_{N}\right)^{T}$, normalize $G^{*}=\mathbf{0}$
- Money supply (\longleftrightarrow nominal GDP), normalize $M^{*}=1$

$$
\sum_{h} P_{h} C_{h}+\sum_{i} G_{i}=M
$$

- Budget constraint:

$$
\sum_{h} T_{h}=\sum_{i}\left(G_{i}+\tau_{i} m c_{i} y_{i}\right)
$$

- For this presentation:

$$
T_{h}=\sum_{i}\left[\left[(I-\Omega)^{-1} \alpha\right]_{h i}^{T} G_{i}+\Theta_{i h} \tau_{i} m c_{i} y_{i}\right]
$$

Outline

Setup

Multipliers

Examples

Empirics

Conclusion

Supply: $I=\mathcal{L}(w, G)$

- Prices and profits:

$$
\pi=\Delta(I-\Omega \Delta)^{-1} \alpha w, \Pi=-(I-\Delta)(I-\Omega \Delta)^{-1} \alpha w
$$

- Consumption:

$$
c=r w+\underbrace{\mathcal{Z} w_{K}}_{\text {fixed factors }}+\underbrace{\hat{\Theta}^{T} \Pi}_{\text {profits }}-\underbrace{T(G)}_{\text {taxes }}, r w=w_{L}-\delta_{\beta}(\alpha) w
$$

- Consumption-leisure tradeoff:

$$
\Gamma c+\Phi I=r w \rightarrow I=\mathcal{L}(w, G)
$$

Demand

- Aggregate GDP:

$$
\delta_{\bar{\beta}}(\alpha) w+\varsigma_{L}^{T} I=d \log M
$$

- Factor income shares:
- direct effect $(w \uparrow, I \uparrow \Rightarrow \varsigma \uparrow)$
- change in wages/prices \rightarrow substitution \rightarrow factor demand
- change in private incomes, spending \rightarrow factor demand

$$
\mathbb{S}_{w} w+\mathbb{S} l=\mathbb{S}_{G} G
$$

- $\varsigma^{T} \mathbb{S}=\mathbf{0}$

Equilibrium

- Aggregate demand:

$$
\underbrace{\left(\delta_{\bar{\beta}}(\alpha)+\varsigma_{L}^{T} \mathbb{S}_{w}\right)}_{\mathcal{E}^{T}} w=d \log M-\varsigma_{L}^{T} \mathcal{L}_{g} G
$$

- Relative demand:

$$
-\underbrace{\left(\mathbb{S}_{w}+\mathbb{S}_{l} \mathcal{L}_{w}\right)}_{\equiv \mathcal{S}_{w}} w=\left(\mathbb{S}_{G}+\mathbb{S}_{l} \mathcal{L}_{g}\right) G
$$

Equilibrium

- Aggregate demand:

$$
\underbrace{\left(\delta_{\bar{\beta}}(\alpha)+\varsigma_{L}^{T} \mathcal{L}_{w}\right)}_{\mathcal{E}^{T}} w=d \log M
$$

- Relative demand:

$$
-\underbrace{\left(\mathbb{S}_{w}+\mathbb{S}_{\mathcal{L}} \mathcal{L}_{w}\right)}_{\equiv \mathcal{S}_{w}} w=\mathbb{S}_{G} G
$$

- Decomposition:

$$
\mathcal{S}_{w}=\mathcal{S}^{X S}\left(I-1 \varsigma^{T}\right)-\overline{\mathcal{S}}_{\varsigma}^{T}
$$

Money multiplier

- Full symmetry, no fixed factors $\Longrightarrow \overline{\mathcal{S}}=\mathbf{0}$

$$
\mathbb{W}_{m}=\frac{1}{\delta_{\bar{\beta}}(\bar{\alpha})+\frac{1}{\gamma+\varphi}\left(1-\delta_{\bar{\beta}}(\bar{\alpha})\right)} d \log M, \mathbb{L}_{m}=\frac{\frac{1}{\gamma+\varphi}\left(1-\delta_{\bar{\beta}}(\bar{\alpha})\right)}{\delta_{\bar{\beta}}(\bar{\alpha})+\frac{1}{\gamma+\varphi}\left(1-\delta_{\bar{\beta}}(\bar{\alpha})\right)}
$$

- Proportional increase
- Satisfy CIA constraint
- Balance excess demand

$$
\mathbb{W}_{m}=\frac{1+\mathcal{S}^{X S-1} \overline{\mathcal{S}}}{\mathcal{E}^{T}\left[1+\mathcal{S}^{X S-1} \overline{\mathcal{S}}\right]} d \log M, \mathbb{L}_{m}=\mathcal{L}_{w} \mathbb{W}_{m}
$$

Spending neutrality

- $\Gamma=\mathbb{O}$ OR uniform γ, φ and no fixed factors
- No effect on relative demand \Longleftrightarrow replicate aggregate consumption basket

$$
\mathbb{S}_{G} G=0 \Longleftrightarrow G \propto \bar{\beta}
$$

- Multiplier \approx one sector, representative agent:

$$
\mathbb{L}_{g} \bar{\beta}=\mathbb{L}_{m}+\left(\mathbf{1}-\mathbb{L}_{m}\right) \frac{\gamma}{\gamma+\varphi}
$$

Spending multiplier

$$
\mathbb{L}_{g} \bar{\beta}=\mathbb{L}_{m}+\left(1-\mathbb{L}_{m}\right) \frac{\gamma}{\gamma+\varphi}
$$

- Wealth effect in labor supply
- Satisfy CIA constraint
- Balance excess demand

$$
\mathbb{L}_{g}=\mathbb{L}_{m} \mathbf{1}^{T}+\left(I-\mathbb{L}_{m} \varsigma_{L}^{T}\right) \mathcal{L}_{g}+\left[\mathcal{L}_{w}-\mathbb{L}_{m} \mathcal{E}^{T}\right] \mathcal{S}^{X S-1} \mathbb{S}_{G}
$$

Irrelevance of composition

- Flex prices, no fixed factors, uniform γ and φ

$$
\begin{aligned}
I=\mathcal{L}(w, G) & =\frac{1-\gamma}{\gamma+\varphi} \underbrace{\left(I-\lambda^{T} \alpha\right) w}_{\text {real wage }}+\frac{\gamma}{\gamma+\varphi} \underbrace{\sum_{i}^{\sum_{i}} G_{i}}_{\text {tax }} \\
& \Longrightarrow \overline{\mathbb{L}}_{G}=\frac{\gamma}{\gamma+\varphi} \sum_{i} G_{i}
\end{aligned}
$$

- Aggregate real wages unaffected by spending
- Same labor supply elasticity for all agents

Outline

Setup
Multipliers

Examples

Empirics

Conclusion

Italy vs Germany

- Cross-section: $I \downarrow$ for sticky workers in a contraction

$$
I_{\text {sticky }}-I_{\text {flex }} \propto \frac{\varphi \theta \bar{\delta}}{1+\varphi \theta \bar{\delta}}\left(\delta_{\text {flex }}-\delta_{\text {sticky }}\right) d \log M
$$

- Substitution \rightarrow more non-neutrality:

$$
\overline{\mathbb{L}}_{m}=\frac{1+\frac{\left(\delta_{\text {flex }}-\delta_{\text {sticky }}\right)^{2}}{1-\bar{\delta}} \frac{\varphi \theta}{1+\varphi \theta \bar{\delta}}}{1+\varphi \frac{\bar{\delta}}{1-\bar{\delta}}-(\varphi-1) \frac{\left(\delta_{\text {flex }}-\delta_{\text {sticky }}\right)^{2}}{1-\bar{\delta}} \frac{\varphi \theta}{1+\varphi \theta \bar{\delta}}}
$$

Italy vs Germany

- Spending increases agg employment iff directed to sticky sector:

$$
\overline{\mathbb{L}}_{g}=\frac{\delta_{\text {flex }}-\delta_{\text {sticky }}}{1+\varphi \theta \bar{\delta}}\left(G_{\text {sticky }}-G_{\text {flex }}\right)
$$

- Substitution \rightarrow smaller XS multiplier

$$
I_{1}-I_{2}=\left[1-\frac{\varphi \theta \bar{\delta}}{1+\varphi \theta \bar{\delta}}\right]\left(G_{1}-G_{2}\right)
$$

Cross-sectional money multiplier

Cross-sectional spending multiplier

Labor supply elasticity

- Expansion benefits elastic workers $\left(\varphi_{E}<\varphi_{I}\right)$:

$$
I_{E}-I_{I}=\left(\varphi_{I}-\varphi_{E}\right) \frac{\theta \delta}{1+\bar{\varphi} \theta \delta} \overline{\mathbb{L}}_{m}
$$

- Substitution \rightarrow larger aggregate multiplier:

$$
\overline{\mathbb{L}}_{m}=\frac{1}{1+\bar{\varphi} \frac{\delta}{1-\bar{\delta}}-\frac{\delta}{1-\bar{\delta}} \frac{\theta \delta}{1+\bar{\varphi} \theta \delta}\left(\varphi_{I}-\varphi_{E}\right)^{2}}
$$

- Spending increases \bar{I} iff directed to elastic workers:

$$
\overline{\mathbb{L}}_{g} \propto \frac{\varphi_{l}-\varphi_{E}}{\bar{\varphi}+\varphi_{E} \varphi_{l} \theta \delta}\left(G_{E}-G_{l}\right)
$$

Input-output linkages

- Longer chain \sim stickier wage
- Replace

$$
\delta_{F}-\delta_{I}=\delta-\delta^{2}
$$

Chain-weighted ES

- XS spending multiplier:

$$
I_{2}-I_{1}=\frac{\varphi \beta_{1}\left(1-\beta_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)\left(\frac{G_{1}}{\beta_{1}}-\frac{G_{2}}{1-\beta_{1}}\right)}{1+\varphi\left[\frac{\beta_{1}\left(1-\beta_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)^{2}}{s_{1}\left(1-s_{1}\right)} \sigma \delta+\left(1-\frac{\beta_{1}\left(1-\beta_{1}\right)\left(\alpha_{1}-\alpha_{2}\right)^{2}}{s_{1}\left(1-s_{1}\right)}\right) \theta\right]}
$$

Real Estate

- Price stickiness vs labor share
- $\theta<\frac{\delta}{1-\delta} \rightarrow$ real wage \uparrow less \rightarrow smaller multiplier
- $\theta>\frac{\delta}{1-\delta} \rightarrow$ real wage \uparrow more \rightarrow larger multiplier

$$
\overline{\mathbb{L}}_{m}=\frac{1-\frac{1-\alpha}{1-\alpha+\varphi \theta}}{1+\varphi \frac{\delta}{1-\delta}-(1+\varphi \theta) \frac{1-\alpha}{1-\alpha+\varphi \theta}}
$$

Aggregate money multiplier

NY or Boise?

- Locate construction projects in Boise $\Longleftrightarrow \theta<\frac{\delta}{1-\delta}$

$$
\overline{\mathbb{L}}_{G} \propto \varphi \theta\left(\frac{\delta}{1-\delta}-\theta\right)\left(\alpha_{B}-\alpha_{N Y}\right)\left(G_{B}-G_{N Y}\right)
$$

- Geographic mobility:
- $\sigma \delta<\theta$: must live where you work \rightarrow construction \uparrow in NY
- $\sigma \delta>\theta$: work from home \rightarrow construction \uparrow in Boise

$$
I_{B}-I_{N Y} \propto \theta(\sigma \delta-\theta)\left(\alpha_{B}-\alpha_{N Y}\right) d \log M
$$

Outline

Setup

Multipliers

Examples

Empirics

Conclusion

- I'm looking into:
- ACS \rightarrow employment shares
- CEX \rightarrow consumption bundles
- BEA \rightarrow capital shares
- ADP \rightarrow wage rigidity
- Suggestions?

Outline

Setup
Multipliers
Examples
Empirics

Conclusion

Conclusion

- Monetary expansion:
- cross-section: nominal rigidity \uparrow, real rigidity $\downarrow \Longleftrightarrow$ price volatility \downarrow, employment volatility \uparrow
- aggregate: substitution \rightarrow more non-neutrality
- Government spending changes demand composition
- larger multiplier iff target workers with more nominal / less real rigidity
- "as if" representative agent \Longleftrightarrow replicate private consumption basket
- Spending vs transfers: TBD

Timing

One-period model

- Period 0: prices are pre-set
- Period 1: money supply and spending shock
- only a fraction of producers can adjust prices
- production and consumption take place
- the world ends

Seignorage

- Consumers need to purchase new money issuances
- agent h buys share v_{h}
- Revenues are fully rebated through lump-sum transfers
- Budget constraint:

$$
P_{h} C_{h}+\underbrace{v_{h} d M}_{\text {money purchase }}=\text { income }_{h}-T_{h}+\underbrace{v_{h} d M}_{\text {seignorage rebate }}
$$

Shares

- Change in shares

$$
\left(I-\frac{\partial \log \text { demand }}{\partial \log \text { income }}\right) \partial \log \varsigma=\left(\frac{\partial \log \text { demand }}{\partial \log w}+\frac{\partial \log \text { profits }}{\partial \log w}\right) w+\frac{\partial}{\partial}
$$

- Definition of factor shares

$$
\left(I-\frac{\partial \log \text { demand }}{\partial \log \text { income }}\right) \partial \log \varsigma=\left(I-\frac{\partial \log \text { demand }}{\partial \log \text { income }}\right)(w+I)
$$

