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Abstract

Empirical research suggests that lower interest rates induce banks to take higher
risks. We assess analytically what this risk-taking channel implies for optimal
monetary policy in a tractable New Keynesian model. We show that this chan-
nel creates a motive for the planner to stabilize the real rate. This objective
conflicts with the standard inflation stabilization objective. Optimal policy thus
tolerates more inflation volatility. An inertial Taylor-type reaction function be-
comes optimal. We then quantify the significance of the risk-taking channel for
monetary policy in an estimated medium-scale extension of the model. Ignor-
ing the channel when designing policy entails non-negligible welfare costs (0.7%
lifetime consumption equivalent).

Keywords: Risk-taking channel, Optimal monetary policy, Inertial policy rate 
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Non-technical summary

A broad empirical literature documents that lower interest rates induce banks
to make riskier investments, a mechanism known as the risk-taking channel of
monetary policy. Furthermore, evidence suggests that this additional risk taking
may be economically inefficient. This raises the question of whether the central
bank should take the risk-taking channel into account when setting the policy
rate, and how.

To address this question, we add a simple model of bank risk taking to the
workhorse model of monetary macroeconomics, the New Keynesian model. Fi-
nancial frictions distort banks’ incentives, leading banks to choose excessively
risky investments. When real rates drop, these distortions become more im-
portant and risk taking increases. On an aggregate level, this implies that
investments become less efficient and aggregate productivity drops when real
interest rates fall.

We analyse optimal monetary policy in this context. Ideally, the central
bank would like to raise the level of the policy rate systematically, in order to
incentivise safer and more efficient investment choices. However, this is not pos-
sible: expectations would adjust, leading to higher inflation and an unchanged
real interest rate. But this doesn’t mean that monetary policy can’t do any-
thing about risk taking at all. What the central bank can do, is to keep the real
interest rates stable. In the model, this reduces fluctuations in risk taking and
actually raises average productivity. Thus, stabilisation of the real rate emerges
as an additional policy objective.

How can the central bank achieve this new objective? The optimal interest
rate policy with a risk-taking channel calls for (i) less strong responses to infla-
tion and for (ii) adjusting the policy rate less abruptly but more persistently to
changes in economic conditions. As a result, the central bank delivers a more
stable real interest rate relative to a standard macro model. This however comes
at the cost of more fluctuations in inflation. Thus, the new objective of real in-
terest rate stabilisation conflicts with the traditional central bank objective of
inflation and stabilisation.

These theoretical insights are developed in a very stylised model. To quantify
their relevance, we extend the model to a quantitatively plausible medium-scale
model, estimated on US data. We find that the risk-taking channel is econom-
ically significant for optimal monetary policy. Accounting for the risk-taking
channel when designing optimal policy yields a markedly different optimal pol-
icy rule and delivers significantly different macroeconomic outcomes: Inflation is
about 50% more volatile, but the real rate about 50% less volatile. We quantify
the loss of social welfare associated to ignoring the risk-taking channel to be
equivalent to a loss of between 0.5% and 1% of aggregate household consump-
tion.
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1 Introduction

The risk-taking channel of monetary policy – the mechanism by which lower interest
rates encourage banks to take on additional risk – is a well-established empirical
regularity. Studies have shown that this channel was active both before and after the
2008 financial crisis.1 Despite policymakers’ awareness of the risk-taking channel,
its normative implications for monetary policy remain to be determined.2 Should
central banks consider their influence on bank risk taking when setting their policy
rates, and if so, how?
We explore these questions in two steps. First, we embed a tractable model of
bank risk taking into the textbook New Keynesian model (NKM), and analytically
characterize optimal monetary policy under a linear-quadratic approximation. Sec-
ond, we embed the same model of bank risk taking into a larger New Keynesian
DSGE model estimated on US data, and use it to explore the quantitative impor-
tance of the risk-taking channel for optimal monetary policy. We show analytically
that the risk-taking channel provides an incentive for the central bank to minimize
the volatility of the real interest rate, conflicting with the standard New Keynesian
policy prescription to minimize inflation volatility. Hence, the risk-taking channel
introduces a new trade-off for the central bank. We find this new trade-off to be
quantitatively significant in the large model: Ignoring the risk-taking channel when
designing optimal monetary policy entails welfare costs of approximately 0.7% of
lifetime consumption equivalent.
To derive the analytical conclusions, we set up a simple NKM with financial inter-
mediation and a bank risk-taking channel. Firms must borrow in advance to finance
production, as in Ravenna and Walsh (2006). Firms’ technologies are risky and differ
in their risk-return characteristics. Banks provide the necessary external financing
to firms by funding themselves through equity and deposits, and they choose the
riskiness of the firm in which they invest. As in Dell’Ariccia et al. (2014), frictions
in the banking system – limited liability, the unobservability of risk taking, and an
equity premium – cause a risk shifting problem. Banks choose to lend to exces-
sively risky firms, in the sense that a reduction in risk would increase the expected
social return on their investment. The level of the real interest rate influences the
degree of risk taking: Lower real interest rates induce banks to choose even riskier

1E.g. Maddaloni and Peydro (2011), Buch et al. (2014), Ioannidou et al. (2014), Jimenez et al.
(2014), Heider et al. (2019), Bubeck et al. (2020).

2E.g. the risk-taking channel was acknowledged in the ECB’s 2021 strategy review (ECB 2021).
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investments, thus giving rise to the risk-taking channel of monetary policy.
How can monetary policy reduce the effects of bank risk taking on welfare? The
average efficiency of banks’ investments depends not only on the level of the real
interest rate, which cannot be influenced by the central bank in the long run, but
also on its volatility. In particular, by reducing the volatility of the real interest rate,
the central bank can increase the average efficiency of investment. The risk-taking
channel thus constitutes a motive for the central bank to stabilize the real interest
rate around its policy-independent average level.
In linearized form, the model boils down to a modification of the textbook three-
equation NKM, which allows us to characterize optimal monetary policy analytically.
We derive four key results. If the risk-taking channel is active, (i) welfare depends
not only on output gap and inflation volatility, as in the standard NKM, but also
on the volatility of the real interest rate; (ii) it is optimal for the central bank to
respond less to inflation fluctuations; (iii) optimal policy implies less real interest
rate volatility, but greater inflation volatility; (iv) the implicit instrument rule that
implements Ramsey-optimal policy features inertia in the policy rate. The risk-
taking channel thus provides a novel explanation for interest rate inertia, which is
observed empirically and routinely built into models.
To quantify the importance of the risk-taking channel for optimal monetary policy,
we use the medium-scale DSGE model of Abbate and Thaler (2019). The latter em-
beds the same banking-sector model described above in an otherwise standard NKM
à la Smets and Wouters (2007). It is estimated on US data, and thus provides a bet-
ter laboratory for quantitative analysis. We numerically determine optimal simple
policy rules, and derive four results that quantify the four theoretical results above.
When the risk-taking channel is active, (i) the central bank accepts approximately
50% more inflation volatility; (ii) the optimal Taylor rule features a significantly
lower response to inflation and (iii) an autoregressive coefficient of approximately
1. Importantly, (iv) the welfare gains of considering the risk-taking channel when
designing optimal monetary policy are significant, and amount to around 0.7% of
lifetime consumption equivalent. This contrasts findings in the literature that other
types of financial frictions do not affect optimal monetary policy significantly (e.g.
Bernanke and Gertler, 2001 or De Fiore and Tristani, 2013).
Our model builds on an extensive empirical literature on the risk-taking channel,
which finds that low interest rates increase the riskiness of banks’ new investments.3

3See, for instance, Maddaloni and Peydro (2011), Buch et al. (2014), Ioannidou et al. (2014),
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Buch et al. (2014) and Ioannidou et al. (2014) moreover find that banks do not offset
higher risk with a sufficiently large increase in the risk premium. Risk taking is thus
inefficient, as in our model.
The main contribution of this paper is twofold. First, we add normative conclusions
for monetary policy to a so far largely positive theoretical literature on the risk-
taking channel.4 The latter models different versions of the risk-taking channel,
with risk originating either on the liabilities side of banks’ balance sheets (via the
leverage choice, as in Gertler et al., 2012, de Groot, 2014, Angeloni and Faia, 2013
and Angeloni et al., 2015) or on the asset side (as in Christensen et al. 2011, Collard
et al. 2017, Abbate and Thaler, 2019 and Afanasyeva and Guentner, 2020). An
important exception is Martinez-Miera and Repullo (2019), who provide a simple
two-period macro model in which banks’ asset risk taking is modeled and affected
by monetary policy in a very similar way to our paper. Since risk taking is excessive
from a social point of view, the authors argue that this mechanism constitutes a
motive for the central bank to increase the real interest rate through monetary policy.
Because we consider monetary policy in the long run under rational expectations, our
message contrasts with theirs. We argue that monetary policy cannot systematically
raise the real interest rate due to monetary neutrality, but can still affect risk taking
by influencing the volatility of the real interest rate.5

The second contribution is to the normative literature on interest rate inertia. While
well documented empirically and a standard feature in many monetary models, it is
theoretically not straightforward that an inertial Taylor rule is optimal for the social
planner. By showing that the risk-taking channel adds an interest rate variation
term to the welfare function and leads to interest rate inertia under Ramsey policy,
we provide a novel theory that can explain inertial interest rate policy. In doing
so, we complement other explanations for why interest rate volatility matters for
welfare, such as the zero lower bound or transaction frictions (Woodford, 2003).6

This normative paper and in particular its last section build on our companion pa-

Jimenez et al. (2014), Bubeck et al. (2020) and Heider et al. (2019)
4The risk-taking channel has also important normative implications for regulatory policy, from

which we abstract for simplicity. We view this choice as a shortcut to model the realistic fact that
regulation might not be completely effective at muting the risk-taking channel in practice.

5We conjecture that our intuition might also apply to Martinez-Miera and Repullo (2019) in
the long run. Since the welfare function is concave in the real rate, a mean preserving increase in
the volatility of the real rate is detrimental to average welfare.

6Note that, while in our case it is the real interest rate and not the nominal one that appears
in the welfare function, the effects are similar.
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per Abbate and Thaler (2019). The latter is a purely positive paper, which finds
that adding the risk-taking channel to an otherwise standard medium-scale NKM
improves the fit on US macroeconomic time series, generates a path of risk taking
that matches survey evidence on the risk of new loans and produces procyclical bank
leverage, as documented by Adrian and Shin (2014). By contrast, the focus of the
present paper is purely normative. Here we set out our theory of the risk-taking
channel in a much simpler, tractable model, which allows us to derive policy conclu-
sions analytically. Only in a last step, we quantify the importance of the analytical
conclusions using the estimated medium-scale model of Abbate and Thaler (2019).
As the two papers have been developed jointly, they reference each other.
The paper proceeds as follows: In section 2 we set up a simple NKM with the risk-
taking channel, which we then use in section 3 to explore optimal policy analytically.
In section 4, we quantify the importance of the risk-taking channel for optimal policy
numerically based on the medium scale model. Section 5 concludes.

2 A simple New Keynesian model of the bank risk-
taking channel

In this section, we set up a simple NKM with financial intermediation and a bank
risk-taking channel. We build on Ravenna and Walsh’s (2006) model of the cost
channel, where input good producers need to borrow in advance to finance pro-
duction. This is a tractable way to introduce intermediation into the textbook
three-equation NKM. We then add the risk-taking channel modeled as in Abbate
and Thaler (2019), who build on Dell’Ariccia et al. (2014): the production technol-
ogy of input good producers is risky and banks choose the riskiness of the producer
they lend to. The economy is populated by eight types of agents: Households, input,
intermediate and final good producers, equity and deposit funds, private banks, and
a central bank. We discuss these agents in turn.

2.1 Households

Households choose consumption Ct and working hours Nt in order to maximize:

Ut = Et

∞∑
i=0

βi

[
C1−σ

t

1 − σ
− N1+φ

t

1 + φ

]
.
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Timing is as follows: Households enter period t with nominal money holdings Mt−1.
They then receive the wage incomeWtNt in cash as well as a lump-sum cash injection
Xt from the central bank. They then use this cash to invest into equity and deposit
funds Dt and Et, and to buy the consumption good Ct, which has to be paid in
advance. Hence, consumption is subject to the cash-in-advance (CIA) constraint:

PtCt ≤ Mt−1 +WtNt −Dt − Et +Xt . (1)

At the end of the period, households work and consume the previously chosen quan-
tities Nt and Ct. The equity and deposit funds return the safe nominal (gross)
rates Re

t and Rd
t . Furthermore, households receives a lump sum profit payment Πt.

Hence, cash holdings Mt at the end of the period are:

Mt = Mt−1 +WtNt −Dt − Et − PtCt +Rd
tDt +Re

tEt + Πt +Xt . (2)

Utility maximization implies that the two safe interest rates are the same, so that
we can simply refer to the safe rate as Rt: Re

t = Rd
t ≡ Rt. Utility maximization

also yields the usual labor supply and Euler equations and implies that the CIA
constraint (1) must hold with equality given positive nominal rates.

2.2 Input good producers

There is a continuum of ex-ante identical input good producers indexed by m, who
hire labor Nm to produce the input good zm

t using a risky production technology.
Each input producer has access to a continuum of technologies with different risk-
return characteristics indexed by qm ∈ [0, 1]. Given a certain technology qm

t , the
output of producer m is:

Zm
t =


(
ω1 − ω2

2 q
m
t

)
Nm

t with probablity qm
t

0 else

Input producers need to pre-pay the wage bill WtN
m
t at the beginning of the period,

but only produce at the end of the period. They therefore need to borrow from
the bank in order to finance the wage bill. They promise to repay the loan after
production at the gross nominal loan rate rl,t and let the bank choose the riskiness
of their technology qt. If production is successful, the producer sells the input good
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at price Pin,t and repays the loan. If production is not successful, he defaults.
Input producers choose the scale of production to maximise their profits. Due to
price taking and the linearity of the production technology in Nt, profit maximiza-
tion implies that they pass all their revenues on to the bank and make zero profits:

Pin,t = rl,tWt/

(
ω1 − ω2

2 qm
t

)
. (3)

Assuming that the production outcomes are independent across producers,7 and
given that in equilibrium all producers use the same technology qt, the quantity of
input goods produced in equilibrium is given by:

Zt = qt

(
ω1 − ω2

2 qt

)
︸ ︷︷ ︸

f(qt)

Nt . (4)

where Zt ≡
∫ 1

m=0 Z
mdm, Nt ≡

∫ 1
m=0N

mdm, and where f(qt) denotes the expected
productivity of input good producers.

2.3 Final and intermediate good producers

Final and intermediate good producers are standard. A representative final good
producer aggregates intermediate good varieties Y i to produce the final consumption
good Y according to the CES aggregator:

Yt =
[∫ 1

0

(
Y i

)(θt−1)/θt

di

]θt/(θt−1)
.

There is a continuum of intermediate good producers indexed by i. They linearly
transform input goods into differentiated intermediate varieties: Y i = AtZ

i
t where

At is total factor productivity. They purchase input goods at price Pin,t and receive a
proportional subsidy τt, financed by lump sum taxes. Hence, their nominal marginal
cost is given by MCt = Pin,t(1 − τt)/At. Since we are not interested in the effect of
the cost channel, we set the subsidy such that its effect is muted τt = 1 − (qtrl,t)−1.8

7This simplifying assumption rules out non-diversifiable systemic risk.
8The cost channel only serves us to tractably introduce intermediation into the 3-equation

NKM. Its implications for optimal policy are discussed in Ravenna and Walsh (2006). The subsidy
is not relevant for the approximation of welfare in section 3.1, but it simplifies the Phillips curve
and, as a result, the derivation of optimal monetary policy. We do not impose the subsidy in section
4, and have verified numerically that it does not affect the results reported there significantly.
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Combining this assumption with (3), marginal costs are given by:

MCt = Wt

Atqt
(
ω1 − ω2

2 qt
) = Wt

Atf(qt)
. (5)

This expression of marginal costs differs from its counterpart in the basic NKM
only in the term f(qt). Idiosyncratic risk at firm level implies that one unit of
labor is transformed into f(qt) units of input goods on aggregate. The higher the
productivity of inputs producers, the lower the marginal costs of intermediate firms.
We discuss the implication of this difference in section 2.7.
Intermediate goods producers operate under monopolistic competition and Calvo
pricing, which leads to the standard dynamics of aggregate prices and price disper-
sion reported in Appendix A2. Profits are rebated lump sum.

2.4 Deposit and equity funds

Deposit and equity funds sell fund shares Dt and Et to the household at the begin-
ning of the period.9 They invest the proceeds into deposits Db

t and equity Eb
t issued

by a continuum of banks indexed by b: Dt =
∫ 1

0 D
b
tdb and Et =

∫ 1
0 E

b
tdb. Each bank

promises to pay the gross nominal deposit and equity rates rb
d and rb

e at the end of
the period. However, the bank may be hit by an i.i.d. default shock, occurring with
probability qt, in which case neither deposits nor equity is repaid.
The deposit fund is a frictionless pass-on vehicle. Diversifying across all banks its
nominal return is:

Rd,t = qtrd,t . (6)

The equity fund functions similarly but, as a simple way to introduce an equity
premium, we assume the equity fund manager needs to be paid a (real) premium ξ

per unit of funds under management to incentivize him to act in the best interest
of equity providers. This premium is rebated to the household lump-sum. The
nominal return on the equity fund is hence given by the average return on bank
equity minus the premium:

Re,t = qtre,t − ξEtπt+1 . (7)
9These funds serve only to simplify exposition. Equivalently, we could assume that the house-

hold perfectly diversifies its deposits and equity across banks, or that there is perfect risk sharing
among a continuum of households, each interacting with one bank.
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Since both funds are perfectly diversified, their returns are risk free. Hence, the
households’ FOCs imply that the returns on fund shares are equated (Re,t = Rd,t ≡
Rt). Nevertheless, the costs of deposit and equity financing for banks differ from
each other (rd,t < re,t), due to the equity premium ξ. The latter invalidates the
Modigliani-Miller irrelevance principle and plays an important role in delivering the
risk-taking channel, as we discuss next.10

2.5 Banks

Banks finance themselves through deposits and equity, and invest these funds into
risky assets. We show in this section that the bank risk choice has implications
for the allocative efficiency of the economy, and therefore bears implications for
monetary policy. The modeling of the banks follows Abbate and Thaler (2019),
who build on Dell’Ariccia et al. (2014), and involves three key assumptions: (i)
Unobservability of the bank’s risk choice and (ii) limited liability of the bank, which
give rise to an agency problem between depositors and equity providers, and (iii)
the cost advantage of deposits over equity introduced in the previous subsection.
There is a continuum of ex-ante identical competitive banks (for convenience we omit
the bank’s index b in this subsection). Banks live for one period. At the beginning
of the period, each bank raises deposits Dt and equity Et from the respective funds,
and lends these resources to one particular input good producer at a promised
nominal (gross) rate rl,t. When lending to an input producer, the bank chooses
the risk characteristic qt of the technology employed by the producer.11 Depositors
cannot observe this risk choice. Hence deposit contracts cannot be made contingent
upon the bank’s risk choice, and the bank cannot credibly commit to a certain risk
choice. At the end of the period, if the input good producer is successful, which
happens with probability qt, the bank receives rl,t(Et +Dt). It then repays deposits
and equity at the promised nominal (gross) rates rd,t and re,t. With probability
1 − qt production fails, and the loan is not repaid. In this case, equity providers and
depositors (because of limited liability) receive nothing.
The bank maximizes excess profits, i.e. the expected return of equity providers net

10This simple way of modeling the equity premium, which can be reinterpreted as transaction
costs of equity or a convenience yield of deposits, is common, e.g. Allen et al. (2011) or Hellmann
et al. (2000).

11The choice of qt may be reinterpreted both as picking among borrowers of different risk levels,
or as monitoring the borrower so as to make repayment more likely. We abstract from any agency
problem between banks and firms.
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of the user cost of equity. The objective function in nominal terms is:

qt

{
rl,t − rd,t

Dt

Et +Dt
− re,t

Et

Et +Dt

}
(Et +Dt) .

When choosing the riskiness of its investment qt, the bank understands the risk
return trade-off implied by the input good producer’s optimality condition (3). We
can hence substitute rl,t in the above expression. Furthermore, define the equity
ratio as kt ≡ Et/ (Et +Dt) and the total balance sheet size by ot ≡ Dt + Et and
divide everything by expected inflation to obtain:

Et

[ 1
πt+1

{(
ω1qt − ω2

2 q2
t

)
Pin,t

Wt
− qtrd,t(1 − kt) − qtre,tkt

}
ot

]
.

To simplify notation, we rewrite the objective function in real variables using the fol-
lowing definitions: vr

t = Et [Pin,t/ (πt+1Wt)] , rr
d,t = Et [rd,t/πt+1] , rr

e,t = Et [re,t/πt+1],
Rr

t = Et [Rt/πt+1] The objective function can be reexpressed as:{(
ω1qt − ω2

2 q2
t

)
vr

t − qtr
r
d,t(1 − kt) − qtr

r
e,tkt

}
ot .

Given the agency problem between depositors and equity providers, it is convenient
to think about the bank’s problem as a two-stage problem. At stage 1, the bank
chooses the scale of its balance sheet and the capital structure and depositors price
deposits. At stage 2, once the balance sheet structure and the deposit rate have
been fixed, the bank chooses the risk level qt. Crucially, given the unobservability
of the risk choice, at stage 2 the deposit rate is taken as given. We now set out the
bank’s recursive problem, see Appendix A1 for a more detailed discussion.
At stage 2, the bank has already raised Et + Dt funds and now needs to choose
the riskiness of its investment qt. As already mentioned, we assume that the bank
cannot write contracts conditional on qt with the depositors at stage one. Therefore,
at the second stage the bank takes the deposit rate as given. Furthermore, since
the capital structure is already determined, maximizing excess profits coincides with
maximizing the gross return on equity. The second stage problem is thus:

max
qt

(ω1qt − ω2
2 q2

t )vr
t − qtr

r
d,t(1 − kt)︸ ︷︷ ︸

V (qt|vr
t ,rr

d,t
,kt)

.

At stage 1, the bank chooses the capital structure kt and the balance sheet size

ECB Working Paper Series No 2772 / February 2023 11



ot to maximize expected excess profits, subject to the participation constraints (i.e.
the funding supply schedules) for depositors and equity providers. Since agents
have rational expectations, everyone correctly infers the level of risk qt that will be
chosen by the bank at the second stage as a function of kt, rr

d,t and vr
t . The first

stage problem is thus:

max
kt,ot,qt,rr

d,t
,rr

e,t

ot

{
vr

t

(
qtω1 − ω2

2 q2
t

)
− qtr

r
d,t(1 − kt) − qtr

r
e,tkt

}

s.t. rr
d,t = Rr

t

qt
and rr

e,t = Rr
t + ξ

qt
and qt = argmaxqt

V (qt | vr
t , r

r
d,t, kt)

Solving the bank’s recursive problem – see Appendix A1 for the algebra – we derive
the bank’s risk choice qt as a function of the safe real interest rate in closed form:

qt = ω1(ξ +Rr
t )

ω2(2ξ +Rr
t ) . (8)

Equation (8) describes the representative bank’s risk choice when the financial sector
is in equilibrium.12 Equilibrium risk taking has four important properties:

PROPOSITION 1: Let qt denote the risk choice of the bank in equilibrium for a
given expected real rate Rr

t and assume this choice is interior. Recall the definition
of the expected productivity of the input producer f(qt) ≡

(
ω1 − ω2

2 qt
)
qt. Then:

(1) Risk decreases in the real interest rate: ∂qt

∂Rr
t
> 0 .

(2) Risk taking is excessive: qt < argmax f(qt) .

(3) Expected productivity increases in the real interest rate: ∂f(qt)
∂Rr

t
> 0 .

(4) Expected productivity is concave in the real interest rate: ∂2f(qt)
∂(Rr

t )2 < 0 .

Part 1 of the proposition states that a decline in the real risk-free rate Rr
t induces

banks to invest into riskier projects (qt falls). This is the risk-taking channel. What
is the intuition behind it? A reduction in the real risk-free rate increases the cost
advantage of deposits, by making the equity premium a more important component
of the cost of equity, in relative terms. Thus, banks have a stronger incentive to rely

12The financial sector is said to be in equilibrium when banks and input good producers solve
their optimization problem and households optimally allocate their savings in deposits and equity.
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on cheaper deposits and lever up. This in turn induces them to take more risk.13

This first result contrasts some of the literature on bank competition and risk tak-
ing, which finds that higher deposit rates strengthen risk taking incentives because
margins are eroded (e.g. Hellmann et al. 2000). In our model, the effect on margins
is muted. Perfect competition among banks implies that changes in the risk-free
rate are passed on to deposits, equity and loan rates.
Part 2 states that the bank’s risk choice is excessive (i.e. suboptimally high), in the
sense that expected productivity would increase if the bank chose a safer investment.
The inefficiency of the risk choice results from both the agency problem between
depositors and equity providers and the cost advantage of deposits. In the absence of
these frictions, qt would be chosen to maximize expected productivity (ω1 − ω2

2 qt)qt

and would thus be given by qo = ω1
ω2

. The frictions drive a wedge between the
optimal risk level qo and the level that is actually chosen qt:

qt = qo ξ +Rr
t

2ξ +Rr
t

.

This wedge is smaller than one, i.e. banks choose excessive risk. Furthermore, it
increases in Rr

t . Thus, risk taking gets more excessive as the real rate falls, implying
a lower expected productivity f (qt) as stated in part 3.
Finally, part 4 states that the effect of Rr

t on expected productivity f (qt) decreases
in Rr

t . That is, f (qt (Rr
t )) is concave. This result will be crucial for optimal policy.

2.6 Central bank

To close the model, the central bank needs to set the nominal interest rate according
to some criterion and adjust the money supply accordingly. We leave this criterion
unspecified for now.

2.7 Comparison to the three-equation New Keynesian model

We have embedded the risk-taking channel into the textbook NKM. This addition
ends up altering only two equations: The definitions of aggregate output and of
marginal costs. We discuss them in turn. The other equations remain unaltered,
and we report them in Appendix A2.

13For this result, it is crucial that the equity premium is constant in absolute terms. As Abbate
and Thaler (2019) argue, this assumption is both common in the theoretical literature as well as
empirically plausible.
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First, using equation (4) and aggregating across the 3 types of producers, aggregate
output is given by:

Yt =
At

(
ω1 − ω2

2 qt
)
qt

∆t
Nt = Atf(qt)

∆t
Nt . (9)

Because of the risk-taking channel, aggregate output is not only a function of labor
Nt, exogenous total factor productivity At and price dispersion ∆t, as in the text-
book NKM, but also of the average productivity of the input production technology
f(qt). This new term is a function of the real interest rate by equation (8):

f(qt) = f (Rr
t ) = ω2

1
ω2

ξ +Rr
t

2ξ +Rr
t

− ω2
1

2ω2

(
ξ +Rr

t

2ξ +Rr
t

)2
. (10)

Aggregate productivity is hence made up of two components, an exogenous one At,
and an endogenous one f(qt). From proposition 1 we know that, because of frictions
in the banking sector, f(qt) is inefficiently low and increases with the real interest
rate. This implies a wedge between the actual and the efficient level of output,
which increases as the real interest rate falls.
Second, marginal costs (given by equation 5) are also affected by the risk-taking
channel, via its effect on aggregate productivity. By the arguments just discussed,
marginal costs are excessively high and increase as the real interest rate falls.
After linearization, the model condenses to an IS and a Phillips curve, which together
with a policy rule for the nominal interest rate, define the three-equation NKM.
While the IS curve is the same as in the textbook model, the risk-taking channel
shows up in the Phillips curve via marginal costs (see Appendix B2):

πt = βEtπt+1 + κ (σ + φ) x̂t − κ (1 + φ) R1R̂
r
t + ut . (11)

Here κ ≡ (1 − ω) (1 − βω) /ω, x̂t is the log of the welfare relevant output gap (with
respect to the efficient level of output), R̂r

t is the expected real rate, both in deviation
from the steady state, and ut is a cost-push shock driven by θt. Furthermore, R1 is
a positive coefficient given by R1 = ∂f(Rr)/∂Rr

f(Rr) , where f(Rr) denotes the steady state
of equation (10).
To summarize, our model boils down to an extension of the textbook NKM, where
aggregate productivity has an endogenous component that is a positive, concave
function of the real interest rate.14

14Our model collapses to the standard NKM when either of the financial frictions (non-
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3 Optimal monetary policy in the simple model

To understand the impact of the risk-taking channel on optimal policy, we first
derive a second-order approximation of the planner’s welfare function, and then use
it to derive optimal policy.

3.1 The central bank’s problem

The planner maximizes household utility. Because our main focus is on stabilization
policies, we follow the literature in assuming that time-invariant subsidies are in
place such that the steady state is efficient. This eliminates the steady-state markup
and the steady-state inefficiency in risk taking. We later relax this assumption, both
in an analytical extension and in the numerical analysis. Under the assumption of an
undistorted steady state, a second-order approximation to consumer welfare leads
to the following social loss function, as we show in Appendix B1:

W = 1
2Et

{ ∞∑
t=0

βt
[
π2

t + λx2
t + κ

θ
R2

(
R̂r

t

)2
]}

. (12)

In this expression, xt denotes the log output gap, θ is the steady state elasticity of
substitution between goods, and λ ≡ κ

θ (σ + φ) denotes the weight of output gap
fluctuations. Moreover, R̂r

t denotes the time t expectation of the real interest rate
in deviations from steady state and R2 is a positive coefficient discussed below.
The loss function is identical to the one in the textbook NKM, with the exception
of the last term, which is related to the risk-taking channel. This is our first key
result about optimal policy: The risk-taking channel introduces a real interest rate
volatility term into the second-order approximation of welfare.15 To understand why
this term appears, recall proposition 1, which states that the expected return of the
bank’s investment is concave. This implies that a mean preserving spread in the
real interest rate reduces the expected return of investment by Jensen’s inequality.
Volatility in the expected real interest rate thus affects welfare negatively.
The loss function (12) illustrates this intuition: The weight on real rate volatility is:

R2 = − fRR

f(Rr) > 0 ,

contractability of q, equity premium) is removed.
15If the equity premium ξ had been defined in nominal terms, the nominal rate would instead

appear in the welfare function.
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where f(Rr) denotes the steady state of equation (10), andfRR the second-order
derivative of f(Rr), which we characterized in proposition 1. This weight is positive
due to the concavity of expected productivity in the real rate (fRR < 0).
Under the assumption of an undistorted steady state, the new term in the linearized
Phillips curve drops out (since fR = 0). A linear quadratic approximation to the
central banks problem hence is to minimize (12) subject to the standard IS and
Phillips curves and the linearized Fisher equation:

min 1
2Et

{∑∞
t=0 β

t

[
π2

t + λx2
t + κ

θ R2
(
R̂r

t

)2
]}

(13)

s.t. xt = Etxt+1 − 1
σ

(
R̂t − Etπt+1

)
(14)

πt = βEtπt+1 + κ (σ + φ)xt + ut (15)

R̂r
t = R̂t − Etπt+1 (16)

The supply-side cost push shock ut is assumed to follow an AR process with au-
toregressive coefficient ρ. For simplicity, but without loss of generality, we have also
assumed that At is constant so that no shock appears in the IS curve.16

3.2 Optimal policy under commitment: Optimal simple rule

We now derive optimal monetary policy, starting with the case of a central bank
that commits to a forward-looking Taylor rule.17 As we show in Appendix B3.1, the
optimal simple rule is given by:

R̂t = ϕs
πEtπt+1 =

[
1 + θκσ(1 − ρ)(σ + φ)

ρ(1 − βρ) (θλ+ κ(1 − ρ)2R2σ2)

]
Etπt+1 , (17)

The Taylor rule coefficient ϕs
π is larger than 1. Deriving ϕs

π with respect to the risk-
taking channel parameter R2 delivers our second result: The risk-taking channel

16In a standard NKM, it is optimal for the central bank to stabilize both inflation and the output
gap perfectly in response to ’demand’ shocks (divine coincidence, Blanchard and Galí, 2007). This
policy requires the real rate to follow the natural rate, which implies non-zero real rate volatility.
The risk-taking channel introduces a trade-off that breaks the divine coincidence. Our key results
regarding inflation and policy rule coefficients (summarized in section 3.4) are robust to adding a
demand shock. The only difference is that output gap volatility would increase in R2, if At were
the only shock.

17This particular rule is useful to build intuition, since it directly relates the (expected) real rate
to inflation. Furthermore, such a rule results from optimal policy under discretion.
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lowers the optimal response of the nominal interest rate to expected inflation, i.e:

∂ϕs
π

∂R2
< 0 (18)

Intuitively, the stronger the risk-taking channel, the stronger the motive to stabilize
the real interest rate, hence the closer ϕs

π to the value of 1 (which would perfectly
stabilize the real rate).
We then solve the model under this rule. That is, we find policy functions of the
form: xt = aut, πt = but, R̂t = cut and R̂r

t+1 = dut. The absolute values of the
coefficients (a, b, c, d), reported in Appendix B3.1, determine the standard deviation
of the four variables. To understand how these standard deviations change with
the risk-taking channel, we compute the rate of change of the four coefficients with
respect to the risk-taking channel parameter R2 and check the sign.
This leads to our third main result: Optimal policy with the risk-taking channel
implies a lower volatility of the output gap and of the real interest rate, but a higher
volatility of inflation, relative to the model without the risk-taking channel.18

What is the intuition behind these two results? The standard trade-off in the NKM
with cost-push shocks is that, through the Phillips curve, inflation stabilization
comes at the cost of higher output gap volatility. However, through the IS curve,
higher output gap volatility also implies higher real interest rate volatility. While
this is irrelevant in the standard NKM, it becomes costly once the risk-taking channel
is active, since fluctuations in the real rate lead to less efficient risk choices on
average. The risk-taking channel thus tilts the trade-off between output gap and
inflation stabilization arising from cost-push shocks in favor of the former. In other
words, the risk-taking channel increases the central bank’s tolerance to deviations
of the real rate from the natural rate.

3.3 Optimal policy under commitment: Ramsey policy

Next, we turn to Ramsey-optimal policy. The central bank’s problem is to solve
(13) by choosing conditional paths for inflation, the output gap and the interest
rate. Appendix B3.2 provides the Lagrangian and the first-order conditions of this
Ramsey problem. As the presence of lagged multipliers in the first-order conditions
highlights, this Ramsey policy complicates the model, since it leads to the intro-

18The effect of the risk-taking channel on the volatility of the nominal rate is ambiguous: For
low enough values of ρ, the risk-taking channel also implies a lower volatility of the nominal rate.
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duction of state variables. For this reason, no analytical solution is available for
the rational expectations equilibrium defined by these conditions. However, it is
possible to combine the first-order conditions to derive an implicit instrument rule
as in Giannoni and Woodford (2003). This rule applies from t ≥ 2, is optimal from
a timeless perspective and reads:

R̂t = ρ1R̂t−1 + ρ2∆R̂t−1 + ϕEπEtπt+1 + ϕππt + ϕπ−1πt−1 + ϕx∆xt

where ρ1 = 1, ρ2 = 1
β , ϕEπ = 1, ϕπ = θσ+θφ

R2σ − 1
β − 1, ϕπ − 1 = 1

β , ϕx = θλ
R2

2κσ
.

As for the optimal simple rule, the weight on inflation in this Taylor-type rule
decreases in the strength of the risk-taking channel. Furthermore, the rule exhibits
a nontrivial degree of persistence: ρ1 = 1, ρ2 > 1. That is, the history dependence
embedded in Ramsey policy makes it optimal for the central bank to move the
policy rate in an inertial manner. Intuitively, moving the policy rate less strongly
but for an extended period of time allows the planner to control demand as well as
by moving the policy rate more strongly but for a shorter period, but the former
implies a lower volatility of the real interest rate, which is welfare enhancing.
As Woodford (2003) shows, the Ramsey-optimal interest rate paths do not in-
volve any explicit reference to the lagged interest rate in the simple NKM.19 The
risk-taking channel introduces instead a case for persistent policy responses under
Ramsey-optimal policy.20 This is our fourth analytical result. The risk-taking chan-
nel therefore provides an additional explanation for interest rate inertia, which is
routinely built into Taylor rules in models, and which is typically observed in prac-
tice. It complements other theories such as the zero lower bound or the cost of
holding money, which also implies that the interest rate – the nominal one, not the
real one as in our case – appears in the welfare function and which also lead to
inertia under optimal policy (Woodford, 2003).

19In the standard NKM, ’optimal policy rules [...] are necessarily pure targeting rules [...] where
the target criterion itself is independent of the path of the interest rate instrument.’ (Woodford,
2003, p. 560). By contrast, the target criterion given by the above instrument rule does depend on
past interest rates.

20Note that the above rule does not nest a rule for the standard NKM. However, as the weight
on real rate stabilization κ

θ
R2

2 goes towards 0, past interest rates become less important in the
determination of the current interest rate, relative to deviations of output and inflation.
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3.4 Summary

Before moving on, we summarise the four analytical results concerning the implica-
tions of the risk-taking channel for optimal monetary policy:

• R1: Real interest rate volatility affects welfare negatively through the risk-
taking channel

• R2: The risk-taking channel lowers the optimal response to inflation in a
simple Taylor-type policy rule

• R3: Optimal monetary policy with the risk-taking channel calls for lower real
interest rate volatility and higher inflation volatility

• R4: The risk-taking channel introduces a motive for inertia in the policy rate

3.5 Robustness: Optimal discretionary policy

In Appendix B3.3 we consider the case of a discretionary policymaker. Analogously
to subsection 3.2, we analyze the impact of the the risk-taking channel parameter
R2 on the Taylor rule parameter and the standard deviations of the endogenous
variables. Results confirm those derived for the optimal simple rule under commit-
ment: The risk-taking channel lowers the optimal response of the policy rate to
inflation (R2), which leads to lower output gap and real interest rate volatility and
higher inflation volatility (R3).

3.6 Robustness: Inefficient steady state

We now relax the assumption of an undistorted steady state, and only assume that
the steady-state markup is small. That is, we allow the steady-state distortions
from the risk-taking channel to be arbitrary. As we show in Appendix B1, a second
order approximation of welfare delivers the following loss function:

W = Et

{ ∞∑
t=0

βt

[
π2

t + λx̂2
t + κ

θ

(
(1 + φ) R2

1 + R2
) (
R̂r

t

)2
+ (19)

2κ
θ

(
−Θx̂t − (1 − Θ) R1R̂

r
t + R1 (σ − 1) R̂r

t ŷ
e
t − R1 (1 + φ) R̂r

t x̂t

) ]}
,
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where ŷe
t denotes the efficient level of output in log deviations from steady state, the

term Θ = 1/θ is related to the steady-state distortion from imperfect competition,
and the coefficient R2 = −fRRf(Rr)−(fR)2

f(Rr)2 > 0 now contains a first-order term as
well. The loss function contains the same volatility terms as before, with an even
larger weight on real rate volatility, strengthening result R1. Additionally, it now
contains a number of first-order and covariance terms. While the first first-order
term −Θx̂t is standard, the second one − (1 − Θ) R1R̂

r
t is related to the risk-taking

channel: higher levels of the real interest rate lead to less excessive risk taking, which
increases welfare. The covariance terms are discussed in Appendix B1.
The central bank’s problem is to minimize the loss function (19) subject to the
Phillips curve (11), now affected by risk-taking channel, the IS curve (14) and the
Fisher equation (16).21 As before, we first determine the optimal simple Taylor rule.
In appendix B3.4, we show that the response to inflation decreases in the strength
of the risk-taking channel (i.e. in R1 and R2). This confirms result R2.
In a second step, we determine the equilibrium dynamics determined jointly by
the IS curve, the Phillips curve, the Fisher equation and the optimal Taylor rule,
as we did before. However, the risk-taking channel parameter R1 now appears
also in the Phillips curve. Hence, the risk-taking channel affects volatilities both
through its impact on the behavior of the private sector (the Phillips curve) and
through its impact on policy (the Taylor rule). Because our focus is on optimal
policy, we focus on the latter. That is, we derive the volatilities with respect to
the parameters R1 and R2 that appear in the optimal rule, keeping the R1 in the
Phillips curve constant. This exercise tells us how the equilibrium in the risk-taking
channel economy changes when the central bank adjusts its policy rule from a rule
that would be optimal in the absence of the risk-taking channel towards the rule
that is optimal given the risk-taking channel. This is in line with the numerical
exercise we conduct in the last section of the paper. Our findings confirm result
R3: Inflation (real rate) volatility increases (decreases), if the central bank’s policy
optimally accounts for the risk-taking channel.
In sum, results R1-R3 are robust to steady state distortions. However, we cannot
make any conclusion about result R4, since an instrument rule is not attainable in
closed form.

21The latter two are not affected by the steady state distortions.
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4 The importance of the risk-taking channel in a quan-
titative New Keynesian model

To quantify the importance of the risk-taking channel, we turn to the quantitative
model of Abbate and Thaler (2019).22 The latter embeds the model of bank risk-
taking from section 2 in an otherwise standard medium-scale New-Keynesian model
as in Smets and Wouters (2007). This larger model has two advantages: First,
it includes a number of additional features that bring it closer to macroeconomic
dynamics. Second, it has been estimated on US data and shown to fit the data well.
Thus, we can rely on a plausible set of empirically determined parameters.23

Since the larger model is essentially a medium scale extension of the simple model,
we refer to Abbate and Thaler (2019) for a full description, and limit ourselves to
a brief explanation of the four differences. First, it includes capital, financed by
banks, so we can give up the assumption that wages need to be prefinanced. The
risky input good producer hence becomes a risky capital good producer. Inefficient
risk taking affects aggregate output through the productivity of capital, via the
same mechanisms discussed in the simple model. Second, the banking sector in the
larger model has two additional features that improve the model’s quantitative fit:
Partial deposit insurance and a non-zero liquidation value in case of bank default.24

Importantly, these additions leave proposition 1 and thus the mechanism unchanged.
Third, the larger model features additional frictions and a more shocks, as in Smets
and Wouters (2007). Fourth, we allow for a distorted steady-state.

4.1 The numerical experiment

We proceed as follows. We set the model parameters to their posterior mean es-
timates (cf. table 4 in Appendix C). Then, we numerically determine the optimal
simple implementable monetary policy rule using a second order approximation as in

22Previous studies typically find financial frictions to have only quantitatively insignificant effects
on optimal monetary policy (e.g. Bernanke and Gertler, 2001 or De Fiore and Tristani, 2013).

23Abbate and Thaler (2019) estimate the model on US data over 1984Q1 to 2007Q3, using seven
standard macro series, plus a measure of the equity ratio in the US banking sector, which allows
the identification of the banking sector parameters. Further details on the estimation and on the
goodness of fit can be found there.

24The deposit insurance scheme, financed through a variable tax on capital, covers the gap
between the insurance cap and the liquidation value. The two features have opposing effects.
Deposit insurance improves the cost advantage of deposits, worsening the risk-taking problem. The
liquidation value increases the optimal risk level, easing the excessiveness of risk taking.
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Schmitt-Grohe and Uribe (2007). We focus on a simple policy rule – as opposed to
Ramsey optimal policy – both because it is realistically implementable and because
its coefficients can easily be related to our analytical results R2 and R4. We do
so in two model versions: The full model with the risk-taking channel (henceforth
bank model), and a model version without this channel, that corresponds to a stan-
dard Smets and Wouters economy (henceforth benchmark model).25 Comparing the
two resulting optimal rules establishes how the risk-taking channel affects optimal
policy. Furthermore, comparing the performance of these two rules in the bank
model allows us to asses how different the two rules are in terms of the behavior of
macroeconomic variables and welfare, thus informing us how important it is for the
policymaker to account for the risk-taking channel.
We look for the policy rule that maximizes welfare (the household’s conditional
lifetime utility) among the class of simple, implementable interest-rate feedback
rules given by:

R̂t = ϕππ̂t+s + ϕyŷt+s + ρrR̂t−1 , (20)

where the index s ∈ {1, 0} allows for forward-looking or contemporaneous rules,
and the hat symbol denotes (expected) log deviations from the steady state.26 We
impose that the inertia parameter ρ has to be non-negative.

4.2 Findings

The numerical analysis delivers four results, which mirror the four theoretical results
above.27 The first two results are evident from Table 1, which reports the optimal
coefficients for four different specifications of the monetary policy rule: contempo-
raneous and forward-looking, without inertia and with optimal inertia.
First, the optimal coefficient on inflation deviations is always significantly smaller
in the bank model than in the benchmark model. This confirms that our analytical
result R2, a lower optimal weight on inflation in the Taylor rule, carries over to the

25The benchmark model can easily be obtained from the bank model by fixing the equity ratio
and the risk choice at their steady state levels. In doing so we keep all parameters fixed. Reesti-
mating the benchmark model does not affect the results significantly.

26Implementability requires uniqueness of the rational expectations equilibrium, while simplicity
requires the interest rate to be a function of readily observable variables (see Schmitt-Grohe and
Uribe, 2007). Note that leverage and risk taking are dependent on the nominal rate and inflation,
both of which already appear in the Taylor rule.

27The results are qualitatively robust with respect to the estimation sample and the choice of
the priors and calibrated parameters.
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Table 1: Optimal simple rules: The second (third) column describes the timing (restrictions)
of the policy rule. Italics indicate restricted parameters.

rule benchmark model bank model
s restriction ρr ϕπt+s ϕyt+s ρ ϕπt+s ϕyt+s

I 0 ρr = 0 0 7.18 0.11 0 3.08 0.12
II 0 0.00 7.18 0.11 1.06 0.05 0.01
III 1 ρr = 0 0 17.82 0.14 0 4.30 0.17
IV 1 0.23 12.75 0.12 1.11 0.07 0.01

medium scale model used here.
Second, if the central bank can optimize over its smoothing parameter, then full
interest rate smoothing is optimal in the bank model, but not in the benchmark
model (rows II and IV), supporting result R4.28

Third, different policy rules imply different behaviours of macroeconomic variables.
Table 2 displays how much the mean and volatility of key variables change when the
central bank switches from the benchmark-optimal rule to the bank-optimal rule
in the bank model. By responding less aggressively to inflation and by smoothing
the nominal interest rate, the central bank optimally limits the volatility of the
real interest rate (column 4). The lower volatility of Rr

t translates into a higher
average return on investment f(qt), due to the concavity of this function in Rr

t

(column 10).29 However, this higher average return on investment comes at the cost
of higher inflation volatility (column 5), in line with the analytical result R3. The
increase in volatility is sizeable (50-70%). Hence, the new trade-off between inflation
and real rate stabilization implies a significant deviation from inflation stabilization:
The central bank reacts a lot less strongly to deviations of inflation from the target
in order to achieve a more stable real rate
Finally, we assess the welfare cost Ω of ignoring the risk-taking channel, i.e. of
applying the benchmark-optimal rule in the bank model.30 The last column of Table
2 shows that these costs are significant for all policy rule specifications, ranging from
0.5% to 0.9% of lifetime consumption equivalent. The risk-taking channel turns out
to affect welfare significantly (result R1). Overall, we can conclude that the risk-
taking channel is economically significant for optimal monetary policy both in terms
of the prescribed policy and the welfare cost of deviating from it.

28Values of ρr slightly above 1 are not uncommon e.g. Rotemberg and Woodford (1999).
29The slight increase in Rr

t accounts only for a marginal fraction of the increase in f(qt).
30This metric ignores the costs associated with the transition.

ECB Working Paper Series No 2772 / February 2023 23



Table 2: Differences in moments and welfare costs: Columns 4-10 indicate the mean
and standard deviation changes (in %) of key variables when the central bank switches from the
benchmark-optimal to the bank-optimal rule in the bank model. The last column reports the welfare
cost (in % of lifetime consumption stream) associated with implementing the benchmark-optimal
policy rule in the bank model.

rule standard deviation mean
s restriction Rr π y Rr π y f(q) Ω

I 0 ρr = 0 -49.45 48.75 -0.97 0.00 -0.06 0.32 0.05 0.49
II 0 -78.81 58.53 -9.44 0.01 -0.05 0.44 0.06 0.91
III 1 ρr = 0 -59.25 55.42 -3.29 0.00 -0.07 0.48 0.06 0.73
IV 1 -79.14 66.71 -10.65 0.01 -0.05 0.43 0.06 0.85

5 Conclusions

This paper analyses the implications of the risk-taking channel for optimal monetary
policy. To this end, we first embed a model of asset risk taking into the textbook
NKM. Then, we characterize optimal policy analytically using a linear quadratic
approximation. We find that the risk-taking channel (i) introduces real rate volatility
into the otherwise standard objective function of the central bank, (ii) calls for lower
real rate volatility and higher inflation volatility, (iii) lowers the optimal response
to inflation in a Taylor-type policy rule, (iv) introduces a motive for inertia in the
policy rule. Lastly, we extend the model to a medium-scale DSGE model of the
type routinely used at central banks to evaluate the quantitative importance of the
risk-taking channel for monetary policy. We show that the four conclusions from
the simple model carry over and matter significantly.
Our model of the risk-taking channel is analytically tractable and our analysis de-
livers clear results for optimal monetary policy. To this end, we have abstracted
form other important dimensions such as risks on the liabilities side of banks, effects
of the zero lower bound or regulation. At the same time however, our qualitative
lessons about optimal policy can be of relevance for any theory that relates TFP to
the level of the real interest rate, such as some theories of capital misallocation (e.g.
Gopinath et al., 2017).
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Online Appendix

Appendix A: Details on the model

A1: The bank’s problem

At the second stage, the bank has already raised Et +Dt funds and now needs to
choose the riskiness of its investment qt. As mentioned in the main text, we assume
that the bank cannot write contracts conditional on qt with the depositors at the
first stage. Therefore, at the second stage the bank takes the deposit rate as given
and maximizes the gross return on equity. The second stage problem is thus:

max
qt∈[0,1]

(
ω1qt − ω2

2 q2
t

)
vr

t − qtr
r
d,t(1 − kt) . (21)

Notice the risk shifting incentives: If the probability of repayment qt is higher, then
the expected payment to depositors (qtr

r
d,t(1 − kt)) is higher. This is due to limited

liability.31

Also notice that – as mentioned in the main text – maximizing the gross return on
equity coincides with maximizing equity holders’ return net of the cost of equity,
which in turn is determined by the equity supply schedule. This is so because the
capital structure and the deposit rate are given at the second stage, but equity
providers still want to break even. In other words, there is no difference between
solving the unconstrained optimization problem (21) or the following constrained
optimization problem:

max
qt∈[0,1]

(
ω1qt − ω2

2 q2
t

)
vr

t − qtr
r
d,t(1 − kt) − qtr

r
e,tkt .

s.t.

rr
e,t = Rr

t + ξ

qt

The FOC reads:
31With unlimited liability the last qt would drop out of the expression and the bank would simply

maximize the expected return on loans.
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qt =
ω1v

r
t − rr

d,t (1 − kt)
ω2vr

t

. (22)

We assume that parameters guarantee an interior solution. By concavity in qt, the
FOC is then sufficient.
At the first stage, the bank chooses the capital structure kt and the balance sheet
size ot to maximize expected excess profits, subject to the participation constraints
(i.e. the funding supply schedules) for depositors and equity providers. Since agents
have rational expectations, everyone correctly infers the level of risk qt that will be
chosen by the bank at the second stage as a function of kt, rr

d,t and vr
t . The first

stage problem is thus

max
kt,∈[0,1],

{
ot,qt,rr

d,t
,rr

e,t

}
∈R4

+

ot

{
vr

t

(
qtω1 − ω2

2 q2
t

)
− qtr

r
d,t(1 − kt) − qtr

r
e,tkt

}
(23)

s.t. rr
d,t = Rr

t

qt
and rr

e,t = Rr
t + ξ

qt
and qt =

ω1v
r
t − rr

d,t (1 − kt)
ω2vr

t

.

Substituting for qt, rr
d,t and rr

e,t allows us to rewrite the above constrained optimiza-
tion problem more compactly as an unconstrained optimization problem:32

max
kt,∈[0,1],ot∈R+

ot

{
vr

t

(
q̂tω1 − ω2

2 q̂2
t

)
−Rr

t − ξkt

}
(24)

where

q̂t =
ω1 +

√
ω2

1 − (4ω2(1 − kt)Rr
t ) /vr

t

2ω2
. (25)

This simplified objective function reflects the fact that not only equity providers but
also depositors anticipate perfectly the banks risk choice in stage 2, such that they
always break even: It is precisely for this reason that the cost of capital Rr

t +ξkt now
is independent of the level of safety qt. It only depends on the real rate, the equity
ratio and the equity premium. There is thus no risk shifting at stage 1, though
everyone anticipates that risk shifting will happen at stage 2.
This formulation highlights the trade-off that the bank faces when choosing the

32Note that when substituting for qt we have guessed that the larger of two roots is the relevant
one. Part 2 of the below proposition will verify this assumption: Given equilibrium prices, for any
kt, ∈ [0, 1], ot ∈ R+ the objective is larger when the larger root is picked.

ECB Working Paper Series No 2772 / February 2023 29



equity ratio kt. The cost of choosing a higher equity ratio is immediately obvious:
A higher kt implies higher costs of capital, due to the equity premium ξ. The benefit
of choosing a higher equity ratio is somewhat less trivial to see as it operates through
q̂t: A higher kt implies more skin in the game and thus a lower risk choice in stage
2 (higher qt). The higher qt leads to (i) an increase in the expected return on the
loan vr

t

(
q̂tω1 − ω2

2 q̂
2
t

)
(ii) reductions in the deposit and equity rates rd and re that

leave the expected cost of capital unchanged, apart from the equity premium. Thus,
through (i) an increase in kt increases the banks expected excess profits. This is the
benefit of choosing a higher kt.
The FOCs for leverage kt reads:

kt = 1 − ξ(Rr
t + ξ)ω2

1v
r
t

ω2Rr
t (Rr

t + 2ξ2) . (26)

Finally, since the first stage problem is linear in the balance sheet size ot, the corre-
sponding first order condition requires banks to make no expected profits in excess
of the costs of funds:

vr
t

(
qtω1 − ω2

2 q2
t

)
︸ ︷︷ ︸

revenues

− (ktξ +Rr
t )︸ ︷︷ ︸

cost of funds

= 0 . (27)

Guessing that the solution for the equity ratio kt is interior, it can be shown that
the FOCs are sufficient.
We can combine the last three equations to derive the banks’ risk choice qt, its
equity ratio kt and the relative equilibrium price ratio vr

t as a function of the safe
real interest rate:

kt = Rr
t

Rr
t + 2ξ (28)

qt = ω1(ξ +Rr
t )

ω2(2ξ +Rr
t ) (29)

vr
t = 2ω2R

r
t (2ξ +Rr

t )
ω2

1(ξ +Rr
t ) (30)

Inspecting these equations, we observe that kt is always interior, which verifies our
guess. Inspecting the equation for qt and combining it with the definition of f(qt)
then directly delivers proposition 1 in the text.
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A2: Full set of recursive equations in the simple model

The following 12 equations (31) - (42) define the equilibrium. Note that only equa-
tions (31) - (33) differ from the standard NKM and that the model collapses to the
standard NKM if f(qt) is a constant.
Marginal costs:

MCt = Wt

At
(
ω1 − ω2

2 qt
)
qt

= Wt

Atf(qt)
(31)

Output:

Atf(qt)Nt = ∆tCt (32)

Risk-taking channel:

f(qt) = f
(
Rr

t+1
)

= ω2
1
ω2

ξ +Rr
t

2ξ +Rr
t

− ω2
1

2ω2

(
ξ +Rr

t

2ξ +Rr
t

)2
(33)

Rr
t = Rt

Etπt+1
(34)

Household optimization:

uC(Ct, Nt) = β
Rt

Etπt+1
uC(Ct+1, Nt+1) (35)

−uN (Ct, Nt)
uC(Ct, Nt)

= wt (36)

Price setting:

π⋆
t = ϵp

ϵp − 1
Z1,t

Z2,t
(37)

Λt = βuC(Ct+1, Nt+1)
uC(Ct, Nt)

(38)

Z1,t = Λtmctyt + βλpEt [(πt+1)ϵp Z1,t+1] (39)

Z2,t = Λtyt + βλpEt

[
(πt+1)ϵp−1 Z2,t+1

]
(40)
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1 = (1 − λ) (π⋆
t )1−ϵp + λ (πt)ϵp−1 (41)

∆t = (1 − λ) (π⋆
t )−ϵp + λ∆t−1 (πt)ϵp (42)

The following equations are recursive:

dt + et = mt−1/πt + wtNt − Ct + xt (43)

mt = mt−1/πt + wtNt − dt − et − Ct +Rt (dt + et) + Πt + xt + ξet − Tt (44)

Πt = Ct − wtztrl,t (45)

qt = ω1
ω2

ξ +Rr
t

2ξ +Rr
t

(46)

kt = Rr
t

Rr
t + 2ξ (47)

dt + et = ot (48)

ot = wtNt (49)

et

et + dt
= kt (50)

Appendix B: Deriving optimal policy

B1: Deriving the welfare function

Our goal is to derive a second-order approximation to the utility of the household
when the economy is close to the steady state, around a zero-inflation steady state

ECB Working Paper Series No 2772 / February 2023 32



and in the case of a small steady state distortion. We follow Galí (2015) and Ravenna
and Walsh (2006). The procedure involves 8 steps. We preliminary describe the
notation that will be used throughout the derivations:

Table 3: Notation

Xt variable in level
X steady state level
xt variable in log: ln(Xt)
x̂t log deviation from steady state: xt − x = ln(Xt) − ln(X) = ln(Xt/X)
X̂t absolute deviation from steady state
Rr

t gross real interest rate

Step 1: Take a second-order Taylor expansion of the utility function in
time t around the steady state C,N:

U(Ct, Nt) ≃ U+UC(Ct−C)+UN (Nt−N)+ 1
2UCC(Ct−C)2+ 1

2UNN (Nt−N)2+t.i.p.

where t.i.p. stands for terms independent of policy, U = U(C,N) denotes the
utility function evaluated at the steady state and Ux = Ux(C,N),Uxx = Uxx(C,N)
respectively denote the first and second order derivative of the utility function with
respect to variable x, evaluated at the steady state. Multiply and divide by steady-
state consumption or employment, where appropriate:

U(Ct, Nt) ≃ U+UC
(Ct − C)

C
C+UN

(Nt −N)
N

N+1
2UCC

(Ct − C)2

C2 C2+1
2UNN

(Nt −N)2

N2 N2+t.i.p.

Step 2 Exploit the aggregate resource constraint: Yt = Ct

U(Ct, Nt) ≃ U+UC

[
(Yt − Y )

Y
Y + 1

2
UCC

Uc

(Yt − Y )2

Y 2 Y 2
]
+UN

[
(Nt −N)

N
N + 1

2
UNN

UN

(Nt −N)2

N2 N2
]
+t.i.p.

Note that, given our utility function, UCC
UC

C = −σ and UNN
UN

N = φ. Use that
Xt−X

X ≃ x̂t + 1
2 x̂

2
t and drop terms of order higher than 2, i.e. use that

(
x̂t + 1

2 x̂
2
t

)2
=

x̂2
t + x̂3

t + 1
4 x̂

4
t ≃ x̂2

t :
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U(Ct, Nt) ≃ U+UC

((
ŷt + 1

2 ŷ
2
t

)
Y − 1

2σŷ
2
t Y

)
+UN

((
n̂t + 1

2 n̂
2
t

)
N + 1

2φn̂
2
tN

)
+t.i.p.

Rearranging:

U(Ct, Nt) ≃ U + UCY

(
ŷt + 1 − σ

2 ŷ2
t

)
+ UNN

(
n̂t + 1 + φ

2 n̂2
t

)
+ t.i.p.

Step 3: Express aggregate employment as a function of output. From our
model, we can express aggregate employment as:

Nt = ∆tYt

Atf (Rr
t )

where ∆t expresses the resource loss due to the price dispersion term, and where
f (Rr

t ) is the dispersion term related to the risk-taking channel, which depends on
the expected real interest rate Rr

t . We take logs of both sides:

ln(Nt) = ln(∆t) + ln(Yt) − ln(At) − ln f(Rr
t )

We derive the second-order Taylor expansion of ln f(Rr
t ):

ln f(Rr
t ) ≈ ln f(Rr) + fR

f(Rr) (Rr
t −Rr) + 1

2
fRRf(Rr) − (fR)2

f(Rr)2 (Rr
t −Rr)2

Define now the two coefficients:

R1 = fR

f(Rr) = 2ξ2

(Rr + ξ)(Rr + 2ξ)(Rr + 3ξ) > 0 (51)

R2 = −fRRf(Rr) − (fR)2

f(Rr)2 = 2(3 (Rr)2 ξ2 + 12Rrξ3 + 11ξ4)
(Rr + ξ)2(Rr + 2ξ)2(Rr + 3ξ)2 > 0 (52)

Replace the second-order Taylor expansion of ln f(Rr
t ) into the expression for ag-

gregate employment, and subtract from both sides the log of the steady state. Since
ln(∆) = ln(1) = δ = 0 and ln(A) = ln(1) = a = 0 we have:

n̂t = δt + ŷt − at − R1R̂
r
t + R2

2
(
R̂r

t

)2

We can plug this into our utility function:
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U(Ct, Nt) ≃ U +UCY

(
ŷt + 1 − σ

2 ŷ2
t

)
+UNN

[
δt + ŷt − at − R1R̂

r
t + R2

2
(
R̂r

t

)2
]

+ UNN
1 + φ

2

[
δt + ŷt − at − R1R̂

r
t + R2

2
(
R̂r

t

)2
]2

+ t.i.p.

Now, we use the following Lemma, proven in ch. 3.4 of Galí (2015): δt = θ
2var {pt(i)}.

This is valid in the neighborhood of a symmetric steady state and up to a second
order approximation. Using this Lemma, and the fact that terms of order higher
than 2 can be dropped out of the approximation, yields:

U(Ct, Nt) ≃ U + UCY

(
ŷt + 1 − σ

2 ŷ2
t

)
+UNN

(
θ

2var {pt(i)} + ŷt − at − R1R̂
r
t + R2

2
(
R̂r

t

)2
+ 1 + φ

2
(
ŷt − at − R1R̂

r
t

)2
)

+t.i.p.

Step 4: Divide everything by UcC so to express the approximation as a
percentage of steady state consumption:

U(Ct, Nt) − U

UCY
≃ ŷt + 1 − σ

2 ŷ2
t

+UNN

UCY

(
θ

2var {pt(i)} + ŷt − at − R1R̂
r
t + R2

2
(
R̂r

t

)2
+ 1 + φ

2
(
ŷt − at − R1R̂

r
t

)2
)

+t.i.p.

Combining the household first order condition with respect to labor, and input
producer’s labor demand condition and the definition of marginal costs, we get
that:

−UN

UC
= W

P
= Aq (ω1 − ω2q)

Φ

Where we have defined Φ = θ/ (θ − 1) as the steady-state markup.33 We then get
that:

UNN

UCY
= −

Aq
(
ω1 − ω2

2 q
)

Φ
N

Aq
(
ω1 − ω2

2 q
)
N

= − 1
Φ

33In the absence of the subsidy on input goods, there would be an additional term related to
the cost channel in the above equation, but the rest of the derivations would be unaffected.

ECB Working Paper Series No 2772 / February 2023 35



Define Θ such that:

1 − Θ = 1
Φ

We can exploit the definition of Θ as well as the assumption of a small steady
state distortion (so any interaction with terms of order ≥ 2 can be eliminated) to
re-express the utility approximation as:

U(Ct, Nt) − U

UCY
≃ ŷt + 1 − σ

2 ŷ2
t − θ

2var {pt(i)} − ŷt + at + R1R̂
r
t − R2

2
(
R̂r

t

)2

− 1 + φ

2
(
ŷt − at − R1R̂

r
t

)2
+ Θ

(
ŷt − at − R1R̂

r
t

)
+ t.i.p.

Note also that at is independent of policy and hence can go into the t.i.p. After
some rearranging of terms, we get:

U(Ct, Nt) − U

UCY
≃ Θŷt + (1 − Θ) R1R̂

r
t − R2

2
(
R̂r

t

)2

− 1
2

[
θvar {pt(i)} − (1 − σ) ŷ2

t + (1 + φ)
(
ŷt − at − R1R̂

r
t

)2
]

+ t.i.p.

Step 5: Collect terms related to output deviations and re-express them
as output gap deviations. Open the square bracket and collect terms related
to output deviations squared:

U(Ct, Nt) − U

UCY
≃ Θŷt+(1 − Θ) R1+1−R2

2
(
R̂r

t

)2
−1

2
[
θvar {pt(i)} + (σ + φ) ŷ2

t + (1 + φ) a2
t

]
− 1

2

[
(1 + φ)

(
R1R̂

r
t

)2
− 2 (1 + φ) ŷtR1R̂

r
t + 2 (1 + φ) atR1R̂

r
t

]
+ t.i.p.

Re-express productivity as a function of the efficient level of output ye
t where needed.

Recall that ye
t is independent of policy and can be expressed as:

ŷe
t = 1 + φ

σ + φ
at (53)

Denoting the output gap as xt = yt − ye
t we can express the utility approximation
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as:

U(Ct, Nt) − U

UCY
≃ Θx̂t +(1 − Θ) R1R̂

r
t − R2

2
(
R̂r

t

)2
− 1

2
[
θvar {pt(i)} + (σ + φ) x̂2

t

]
− 1

2 (1 + φ)
(
a2

t + R2
1

(
R̂r

t

)2
− 2ŷtR1R̂

r
t + 2atR1R̂

r
t

)
+ t.i.p.

Step 6: Express var {pt(i)} as a function of inflation. From Woodford (2000)
and Lemma 2 in Ch. 4 of Galí (2015) we know that: var {pt(i)} ≈ ωvar {pt−1(i)} +

ω
1−ωπ

2
t , where ω is the Calvo parameter. So we have that:

∞∑
t=0

βtvar {pt(i)} = ω

(1 − βω) (1 − ω)

∞∑
t=0

βtπ2
t + t.i.p

Step 7: Get the approximated present discounted value of the welfare
loss function:

W = −E0

∞∑
t=0

βtU(Ct, Nt) − U

UcC
= −E0

{ ∞∑
t=0

βt

[
Θx̂t + (1 − Θ) R1R̂

r
t − R2

2
(
R̂r

t

)2

−1
2

[
θvar {pt(i)} + (σ + φ) x̂2

t + (1 + φ)
(
a2

t + R2
1

(
R̂r

t

)2
− 2ŷtR1R̂

r
t + 2atR1R̂

r
t

)] ]}

Using step 6 we get:

W =−E0

{ ∞∑
t=0

βt

[
Θx̂t+(1 − Θ) R1R̂

r
t −R2

2
(
R̂r

t

)2
−1

2
ωθ

(1 − ω) (1 − ωβ)π
2
t −1

2 (σ + φ) x̂2
t

− 1
2 (1 + φ)

(
a2

t + R2
1

(
R̂r

t

)2
− 2ŷtR1R̂t + 2atR1R̂

r
t

) ]}

Collect the terms related to the real interest rate, remember that at is independent
of policy and re-express ŷt in terms of the output gap. This yields:

W = −E0

{ ∞∑
t=0

βt

[
Θx̂t − 1

2
ωθ

(1 − ω) (1 − ωβ)π
2
t − 1

2 (σ + φ) x̂2
t + (1 − Θ) R1R̂

r
t
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− 1
2

(
(1 + φ) R2

1 + R2
) (
R̂r

t

)2
−R1 (σ − 1) R̂r

t ŷ
e
t + R1 (1 + φ) R̂r

t x̂t

]}

The first three terms in this approximation are standard. Welfare loss increases
with distortions in the current output gap (from the first best level), and with the
volatility of inflation and in the output gap. The remaining terms derive from the
inclusion of the risk-taking channel:

• − (1 − Θ) R1R̂
r
t : A higher real interest rate, decreases the inefficiency of risk

taking, reducing the welfare loss.

•
(
(1 + φ) R2

1 + R2
) (
R̂r

t

)2
: The real rate affects the efficiency of the banks’

investment choice and through that the productivity of labor (TFP). Volatility
in the real interest rate makes TFP more volatile and reduces it on average
(due to the concavity of f). These two effects, which are captured by the two
coefficients, imply that real rate volatility lowers welfare.

• R1 (σ − 1) R̂r
t ŷ

e
t : For a risk aversion parameter σ greater than unity, this term

is clearly positive, implying that welfare losses increase in the covariance be-
tween the real interest rate gap and the efficient level of output (i.e. produc-
tivity). A negative productivity shock (a fall in the efficient level of output)
coupled with a fall in the real interest rate would imply an even larger negative
productivity shock, amplifying the welfare loss. This is because a lower real
rate increases the inefficiency of risk-taking, lowering the marginal productiv-
ity of labor.

• −R1R̂
r
t (1 + φ) x̂t: Welfare losses decrease in the covariance between the out-

put gap the real interest rate gap. The intuition is the same as for the previous
covariance term: A positive output gap coupled with an increase in the real
interest rate implies an additional increase in the output gap, increasing wel-
fare. This is because a higher real rate decreases the inefficiency of risk-taking,
increasing the marginal productivity of labor and through that aggregate out-
put.

Step 8: Assume correction of the steady state distortion through fiscal
instruments. If we assume that the steady state is undistorted then Θ = 0 and
R1 = 0 and x̂t = xt. The second equality follows from the first derivative of f(Rr)
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being equal to zero, given the optimal steady state risk choice. The approximated
present discounted value of the welfare loss simplifies to:

W = −E0

{ ∞∑
t=0

βt
[
−1

2
ωθ

(1 − ω) (1 − ωβ)π
2
t − 1

2 (σ + φ)x2
t − 1

2R2
(
R̂r

t

)2
]}

Hence, only the variance of the real interest rate remains as an additional term in
the welfare loss function.
Defining κ = (1−ω)(1−βω)

ω and λ = κ
θ (σ + φ) we can equivalently write the loss

function as

W = 1
2Et

{ ∞∑
t=0

βt
[
π2

t + λx2
t + κ

θ
R2

(
R̂r

t

)2
]}

B2: The linearized Phillips curve

We can express the Phillips curve as (Galí (2015), ch.3):

πt = βEt [πt+1] − κϕ̃t (54)

with ϕ̃t being the deviation between the average and the desired markup and κ =
(1−ω)(1−βω)

ω . Note that the average price markup is equal to the inverse of real
marginal costs, defined in equation (31):

ϕt = pt − (wt − at − ln f(Rr
t ))

where small-case letters denote logs. We can then substitute the household’s labor
choice (φnt + σct = wt − pt) and use yt = ct, yielding:

ϕt = − (φnt + σyt) + at + ln f(Rr
t )

Substitute for nt using nt = yt − at − ln f(Rr
t )

ϕt = − (σ + φ) yt + (1 + φ) at + (1 + φ) ln f(Rr
t )

Under flexible prices, the markup is equal to the desired level (Φn
t = θt/ (θt − 1)):

ϕn
t = − (σ + φ) yn

t + (1 + φ) at + (1 + φ) ln f(Rr,n
t ) (55)
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Get an expression for ϕ̃t, the deviation between the average and the desired markup:

ϕ̃t = − (σ + φ) (yt − yn
t ) + (1 + φ) (ln f(Rr

t ) − ln f(Rr,n
t ))

Use the identity yt − yn
t = (yt − ye

t ) + (ye
t − yn

t ) :

ϕ̃t = − (σ + φ) (yt − ye
t ) − (σ + φ) (ye

t − yn
t ) + (1 + φ) (ln f(Rr

t ) − ln f(Rr,n
t ))

Use the definition of the welfare relevant output gap:

ϕ̃t = − (σ + φ)xt − (σ + φ) (ye
t − yn

t ) + (1 + φ) (ln f(Rr
t ) − ln f(Rr,n

t ))

Subtract the steady state, and denote with “hat” deviations from the steady state.

ϕ̃t − 0 = − (σ + φ) x̂t − (σ + φ) (ŷe
t − ŷn

t )

+ (1 + φ) [ln f(Rr
t ) − ln f(Rr) − ln f(Rr,n

t ) + ln f(Rr,n)]

A first order Taylor expansion of the bracket in the second line yields R1R̂
r
t −R1R̂

r,n
t

(see Appendix B1 step 3) so we can write

ϕ̃t = − (σ + φ) x̂t + (1 + φ) R1R̂
r
t − (1 + φ) R1R̂

r,n
t − (σ + φ) (ŷe

t − ŷn
t )

Using the definitions of ŷe
t and ŷn

t (53) and (55) we can rewrite this as:

ϕ̃t = − (σ + φ) x̂t + (1 + φ) R1R̂
r
t − ϕ̂t

Substitute the above equation into the first version of the Phillips curve (54):

πt = βEt [πt+1] + κ (σ + φ) x̂t − κ (1 + φ) R1R̂
r
t + ut

Where we have defined the cost-push shock as ut = κϕ̂t, i.e. the term capturing
short-run deviations of the desired markup caused by movements in the parameter
θt.
Under the assumption of an efficient steady state the expression simplifies to the
standard Phillips curve, since R1 = 0.
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πt = βEt [πt+1] + κ (σ + φ)xt + ut

B3: Optimal monetary policy

Assuming no steady-state distortions, the monetary policy problem is:

min1
2E0

{ ∞∑
t=0

βt
[
π2

t + λx2
t + κ

θ
R2R̂

r
t

2
]}

(56)

xt = Etxt+1 − 1
σ

(
R̂t − Etπt+1

)
∀t (57)

πt = βEtπt+1 + κ (σ + φ)xt + ut ∀t (58)

R̂r
t = R̂t − Etπt+1 ∀t (59)

where κ = (1−ω)(1−βω)
ω is the coefficient on marginal costs in the New Keynesian

Phillips curve, λ = κ
θ (σ + φ) denotes the weight of output gap fluctuations relative

to inflation fluctuations in the loss function, θ is the elasticity of substitution between
goods, and where we have already substituted R̂r

t = R̂t − Etπ̂t+1. The term ut is a
cost-push shock that follows an AR process with autoregessive coefficient ρ.

B3.1: Optimal simple rule

To determine the Taylor-type optimal simple rule, we follow Clarida et al. (1999)
and find an optimal simple rule that depends on only the exogenous state. We
analyze the associated equilibrium and then solve for the equivalent Taylor-type
rule. We present the results in the main text in the reverse order.
Consider a rule for the target output gap, contingent on the fundamental shock ut

xt = −γut, ∀t (60)

This particular rule is motivated by the fact that the optimal policy under discretion
leads to a rule of such shape. Furthermore it is analytically convenient.
Combine this equation with the Phillips curve (58) and the IS curve (57), and get

ECB Working Paper Series No 2772 / February 2023 41



expressions for πt and R̂r
t that also depend on the fundamental shock:

πt = βEtπt+1 − κ (σ + φ) γut + ut

R̂r
t = γσ (1 − ρ)ut + Etπt+1 (61)

Manipulate the Phillips curve to get:

πt = βEtπt+1 + [1 − κ (σ + φ) γ]ut

πt = Et

∞∑
i=0

{
βiρi [1 − κ (σ + φ) γ]ut

}

πt = 1 − κ (σ + φ) γ
1 − βρ

ut (62)

Using this we can rewrite the IS curve

R̂r
t = γσ (1 − ρ)ut + 1 − κ (σ + φ) γ

1 − βρ
ρut (63)

The central bank chooses γ in order to minimize the loss function Ut = π2
t + λx2

t +
κ
θ R2

(
R̂r

t

)2
subject to the contemporaneous Phillips and IS curve (62) and (63) and

the policy rule (60). Plugging in, the optimal policy problem can be re-expressed
as choosing the value of γ that maximizes the following objective function:

(1 − κ (σ + φ) γ
1 − βρ

)2
u2

t + λγ2u2
t + κ

θ
R2 (γσ (1 − ρ))2 u2

t

The FOC yields the following solution for γ:

γ = (σ + φ)κ
(1 − ρβ)2

(
κ2(σ+φ)2

(1−βρ)2 + λ+ κ(1−ρ)2R2σ2

θ

) (64)

This solution can be substituted in equations (60), (63) and (62) to get the policy
functions for the output gap, inflation and the nominal and real interest rate.

xt = aut = −γut (65)
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πt = but =

(
1 − θκ2(σ+φ)2

θ(λ(1−βρ)+κ2(σ+φ)2)+κ(1−ρ)2R2σ2(1−βρ)2

)
1 − βρ

ut (66)

Rt = cut = −
(
θ(λρ(1 − βρ) − κ(1 − ρ)σ(σ + φ)) − κ(1 − ρ)2ρR2σ2(1 − βρ)

)
θ (λ(1 − βρ)2 + κ2(σ + φ)2) + κ(1 − ρ)2R2σ2(1 − βρ)2 ut (67)

Rr
t = dut = θκ(1 − ρ)σ(σ + φ)

θ (λ(1 − βρ)2 + κ2(σ + φ)2) + κ(1 − ρ)2R2σ2(1 − βρ)2 ut (68)

The parameters multiplying the shock also determine the standard deviation of
the variables of interest up to a constant, which is the standard deviation of the
exogenous shock. We can compute the rate of change of these standard deviations
with respect to the risk-taking channel parameter R2 to understand how the risk-
taking channel affects these standard deviations:

σx,R2 = − κ(1 − ρ)2σ2

θ
(

κ2(σ+φ)2

(1−βρ)2 + λ + κ(1−ρ)2R2σ2

θ

) < 0 (69)

σπ,R2 = θκ3(1 − ρ)2σ2(σ + φ)2

(θλ + κ(1 − ρ)2R2σ2) (θ (λ(1 − βρ)2 + κ2(σ + φ)2) + κ(1 − ρ)2R2σ2(1 − βρ)2) > 0 (70)

σR,R2 = −
θκ2(1 − ρ)2σ2(1 − βρ)(σ + φ)

(
σ

(
−ρ(β + κ) + βρ2 + (1 − ρ)

)
− κρφ

)
(θ(λρ(1 − βρ) + κ(1 − ρ)σ(σ + φ)) + κ(1 − ρ)2ρR2σ2(1 − βρ)) (θ (λ(1 − βρ)2 + κ2(σ + φ)2) + κ(1 − ρ)2R2σ2(1 − βρ)2)

(71)

σRr,R2 = − κ(1 − ρ)2σ2(1 − βρ)2

θ (λ(1 − βρ)2 + κ2(σ + φ)2) + κ(1 − ρ)2R2σ2(1 − βρ)2 < 0 (72)

σx,R2 and σRr,R2 are evidently negative while σπ,R2 is evidently positive, as in the
case without commitment. The sign of σR,R2 is ambiguous as before. However, for
low enough values of ρ the derivative of the standard deviation with respect to the
risk-taking channel parameter is negative. We can see this by setting ρ to zero,
which yields ∂σr/∂R2

σr
= − κσ2

θ(κ2(σ+φ)2+λ)+κR2σ2 < 0. Overall, we can conclude that
the inclusion of the risk-taking channel implies a lower output gap and real interest
rate volatility and a higher inflation volatility under optimal policy.
As in Clarida et al. (1999), we can reexpress the policy rule for the nominal interest
rate as a function of expected future inflation. The parameter multiplying expected
inflation is the optimal Taylor rule parameter ϕc

π, describing how the central bank
should react to expected inflation:
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R̂t = ϕs
πEtπt+1 =

[
1 + θκσ(1 − ρ)(σ + φ)

ρ(1 − βρ) (θλ+ κ(1 − ρ)2R2σ2)

]
Etπt+1 (73)

We can see that the presence of the risk-taking channel lowers the optimal response
of the nominal interest rate to expected inflation, i.e.:

∂ϕs
π

∂R2
= − θκ(ρ− 1)3σ3(σ(κ+ ρ− 1) + κφ)

(ρ(β + κ) − 1) (θλ+ κ(ρ− 1)2R2σ2)2 − θκ2(1 − ρ)3σ3(σ + φ)
ρ(1 − βρ) (θλ+ κ(1 − ρ)2σ2)2 < 0

(74)

B3.2: Ramsey-optimal policy

Under full commitment, the central bank’s problem is to maximizes (56) , by choos-
ing conditional paths for inflation, the output gap and the interest rate. The asso-
ciated Lagrangian is given by

L0 = −1
2E0

{ ∞∑
t=0

βt
[
π2

t + λx2
t + κ

θ
R2

(
R̂r

t

)2
]

+ χt

[
xt − xt+1 + 1

σ

(
R̂t − πt+1

)]
+ ψt [πt − βπt+1 − κ (σ + φ)xt − ut]

+ ςt
(
−R̂r

t + R̂t − πt+1
) }

(75)

The multipliers associated to the Phillips curve, the IS curve and the definition of
the real rate are respectively ψt, χt and ςt. The FOCs wrt. πt, xt, R̂t, R̂r

t , ςtt are:

πt + ψt − ψt−1 − 1
σβ

χt−1 − 1
β
ςt−1 = 0

λxt − κ (σ + φ)ψt + χt − 1
β
χt−1 = 0

1
σ
χt + ςt = 0

κ

θ
R2R̂

r
t − ςt = 0

xt − xt+1 + 1
σ

(
R̂t − πt+1

)
= 0
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πt − βπt+1 − κ (σ + φ)xt − ut = 0

−R̂r
t + R̂t − πt+1 = 0

with χ−1 = ψ−1 = 0. We can eliminate R̂r
t and ςtt to simplify the system somewhat

πt + ψt − ψt−1 − 1
σβ

χt−1 − κ

βθ
R2

(
R̂t−1 − πt

)
= 0

λxt − κ (σ + φ)ψt + χt − 1
β
χt−1 = 0

1
σ
χt + κ

θ
R2

(
R̂t − πt+1

)
= 0

xt − xt+1 + 1
σ

(
R̂t − πt+1

)
= 0

πt − βπt+1 − κ (σ + φ)xt − ut = 0

Unfortunately, no simple analytical solution is available for the rational expectations
equilibrium defined by these conditions.
However, is possible to combine the first three equations to derive the following
implicit instrument rule as in Giannoni and Woodford (2003). This rule applies
from t ≥ 2 and is optimal from a timeless perspective:

R̂t = ρ1R̂t−1 + ρ2∆R̂t−1 + ϕEπEtπt+1 + ϕππt + ϕπ−1πt.−1 + ϕx∆xt

where

ρ1 = 1

ρ2 = 1
β

ϕEπ = 1

ϕπ = θσ + θφ

R2σ
− 1
β

− 1

ϕπ − 1 = 1
β

ϕx = θλ

R2κσ

As in Giannoni and Woodford (2003), this Taylor-type rule exhibits a nontrivial
degree of persistence: ρ1 = 1, ρ2 ≫ 0. By construction, the optimal Taylor rule
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under no commitment or under optimal simple rules does not feature any persistence.
As Woodford (2001) shows, in the standard NKM – i.e. in this model without the
risk-taking channel – the fully optimal interest rate paths do not involve any explicit
reference to the path of interest rates either.34 Thus, under fully optimal policy the
risk-taking channel requires persistent policy responses. This is a result of the fact
that the interest rate appears in the welfare function.
The risk-taking channel thus provides an additional explanation for interest rate
inertia, which is routinely built into Taylor rules in models, and which is typically
observed in practice. It augments other theories such as the zero lower bound or the
cost of holding money, which regularly motivate researchers to include the interest
rate – the nominal one, not the real one as in our case – in the welfare function and
which also lead to inertia under optimal policy.

B3.3: Optimal discretionary policy

We now assume that the central bank cannot credibly commit itself to any future
action and cannot therefore influence expectations on future variables. The central
bank problem simplifies to one of sequential optimisation, i.e. the central bank
chooses output and inflation in order to minimise the period losses Ut = π2

t +λx2
t +

κ
θ R2

(
R̂t − Etπt+1

)2
subject to the contemporaneous IS and Phillips curve, whose

multipliers are denoted by χt and ψt . Under optimal discretion, the first-order
conditions for the central bank problem are:

∂Ut

∂πt
= −πt + ψt = 0

∂Ut

∂xt
= −λxt + χt − κ (σ + φ)ψt = 0

∂Ut

∂R̂t

= −κ

θ
R2

(
R̂t − Etπt+1

)
+ 1
σ
χt = 0

The above conditions imply the following equilibrium relationship between inflation,
the output gap and the real interest rate, under optimal discretionary monetary
policy:

34Note that the above rule does not nest a rule for the standard NKM. However, as the weight
on real rate stabilization κ

θ
R2

2 goes towards 0, past interest rates become less important in the
determination of current interest rate, relative to deviations of output and inflation.
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πt = − λ

κ (σ + φ)xt +
σ κ

θ R2

κ (σ + φ)
(
R̂t − Etπ̂t+1

)
(76)

Next, we derive the policy functions for the key variables of interest. We find
them using the method of undetermined coefficients. Since there are no endogenous
states, the policy functions must be linear functions in the cost-push shock ut. We
assume therefore the following policy functions: xt = aut, πt = but R̂t = cut and
R̂r

t = dut. Since the cost-push shock is AR(1), we also know that Ext+1 = aρut and
Eπt+1 = bρut. Combining these functions with the Phillips curve (58), the IS curve
(57), the definition of the real rate and the central bank’s optimality condition (76),
we can derive the following coefficients:

a = − θκ(σ + φ)
θ (−βλρ+ κ2(σ + φ)2 + λ) + κ(ρ− 1)R2σ2(βρ− 1) (77)

b = θλ− κ(ρ− 1)R2σ
2

θ (−βλρ+ κ2(σ + φ)2 + λ) + κ(ρ− 1)R2σ2(βρ− 1) (78)

c = θ(λρ− κ(ρ− 1)σ(σ + φ)) − κ(ρ− 1)ρR2σ
2

θ (−βλρ+ κ2(σ + φ)2 + λ) + κ(ρ− 1)R2σ2(βρ− 1) (79)

d = − θκ(ρ− 1)σ(σ + φ)
θ (−βλρ+ κ2(σ + φ)2 + λ) + κ(ρ− 1)R2σ2(βρ− 1) (80)

The absolute values of these coefficients also determine the standard deviation of
the output gap, inflation and the nominal and real interest rates, up to a scaling
factor which is the standard deviation of the cost-push shock. We are interested
in establishing how these standard deviations change with the risk-taking channel.
To do so, we derive the rate of change of the four coefficients with respect to the
risk-taking channel parameter R2 – e.g. σx,R2 = ∂a

∂R2
a−1 – and check the sign:

σx,R2 = − κ(1 − ρ)σ2(1 − βρ)
θ (λ(1 − βρ) + κ2(σ + φ)2) + κ(1 − ρ)R2σ2(1 − βρ) < 0 (81)

σπ,R2 = θκ3(1 − ρ)σ2(σ + φ)2

(θλ + κ(1 − ρ)R2σ2) (θ (λ(1 − βρ) + κ2(σ + φ)2) + κ(1 − ρ)R2σ2(1 − βρ)) > 0 (82)

σR,R2 = θκ2(1 − ρ)σ2(σ + φ)(σ(ρ(β(1 − ρ) + κ + 1) − 1) + κρφ)
(θ(λρ + κ(1 − ρ)σ(σ + φ)) + κ(1 − ρ)ρR2σ2) (θ (λ(1 − βρ) + κ2(σ + φ)2) + κ(1 − ρ)R2σ2(1 − βρ))

(83)
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σRr,R2 = − κ(1 − ρ)σ2(1 − βρ)
θ (λ(1 − βρ) + κ2(σ + φ)2) + κ(1 − ρ)R2σ2(1 − βρ) < 0 (84)

Given that ρ < 1 and β < 1, it is straightforward to see that all terms in the
numerators and denominators of (81), (82) and (84) are positive. Thus σx,R2and
σRr,R2 are negative, implying that the standard deviation of the output gap under
optimal policy is lower when the risk-taking channel is present. By contrast, σπ,R2

is negative, indicating that the standard deviation of inflation increases with the
risk-taking channel.
The sign of σR,R2 in equation (83) is ambiguous. While the denominator is clearly
positive, the sign of the numerator depends on the value of the autoregressive pa-
rameter ρ. For low enough values of this parameter, the derivative of the standard
deviation with respect to the risk-taking channel parameter is negative. We can see
this, by considering the case of an i.i.d. shock (ρ=0). In this case, equations (81) to
(84) become:

σx,R2 = σR,R2 = σRr,R2 = − κσ2

θ
(
κ2 (σ + φ)2 + λ

)
+ κR2σ2

< 0

σπ,R2 = θκ3 (σ + φ)2

(θλ+ κR2σ2)
(
θ

(
κ2 (σ + φ)2 + λ

)
+ κR2σ2

) > 0

To derive a policy rule that implements the above equilibrium, we re-express the
nominal interest rate as a function of expected future inflation (see Clarida et al.
(1999)). The parameter multiplying expected inflation can be interpreted as an
optimal Taylor rule parameter ϕd

π, describing how the central bank should react to
expected inflation under optimal discretionary policy:

R̂t = ϕd
πEtπt+1t = θ(λρ+ κ(1 − ρ)(σ + φ)φ) + κ(1 − ρ)ρR2σ

2

ρθλ+ κ(1 − ρ)ρR2σ
2 Etπt+1 (85)

We can see that the presence of the risk-taking channel lowers the optimal response
of the nominal interest rate to inflation, i.e.:

∂ϕd
π

∂R2
= − θκ2(1 − ρ)2σ3(σ + φ)

ρ (θλ+ κ(1 − ρ)R2σ2)2 < 0 (86)

Note that it suffices to take a derivative since the sign of equation (85) is clearly
negative.
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B3.4 Optimal simple rules with a distorted steady state

Assuming a small steady-state markup, the monetary policy problem is:

minEt

∞∑
t=0

βt

[
1
2π

2
t + 1

2λx̂
2
t + 1

2
κ

θ

(
(1 + φ) R2

1 + R2
) (
R̂r

t

)2

−κ

θ
(1 − Θ) R1R̂

r
t − R1

κ

θ
(1 + φ) R̂r

t x̂t − κ

θ
Θx̂t

] (87)

xt = Etxt+1 − 1
σ

(
R̂t − Etπt+1

)
∀t (88)

πt = βEtπt+1 + κ (σ + φ) x̂t − κ (1 + φ) R1R̂
r
t + ut ∀t (89)

R̂r
t = R̂t − Etπt+1 ∀t (90)

Note that we have dropped ŷe
t since the efficient level of output is constant in the

absence of productivity shocks.
We proceed in two steps: First, we determine the optimal simple rule as in appendix
B3.1 to analyze how the risk-taking channel affects the optimal behaviour of the
central bank. Second, we determine how the risk-taking channel affects the volatility
of macro variables via its impact on policy.

Optimal simple rule

We begin by finding the optimal simple rule. As before, we restrict ourselves to a
one-instrument Taylor rule with zero steady-state inflation. This latter assumption
is without loss of generality. To see this, recall that zero steady-state inflation is
optimal in the three equations New Keynesian model (see Gali 2008). Since the real
rate is exogenous to policy, it must also be optimal in the model with the risk-taking
channel.
Proceeding similarly as in appendix B3.1, we derive an optimal simple rule in the
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form of a forward-looking Taylor rule. It is given by:

R̂t = ϕdss
π Etπt+1 (91)

where

ϕdss
π = 1+ θκ(1 − ρ)σ [σ ((1 − ρ)R1(φ+ 1) + 1) + φ]

κ(1 − ρ)σρ(1 − βρ)
(
(1 − ρ)(R1)2σ(φ+ 1) + 2R1(φ+ 1) + (1 − ρ)R2σ

)
+ ρ(1 − βρ)θλ

The risk-taking channel now manifests itself in two parameters R1 and R2. The
derivatives of the Taylor rule coefficient ϕdss

π wrt. R1 and R2 are given by:

∂ϕdss
π

∂R1
= −

θ(1 − ρ)2σ2(φ+ 1)
(
σ

(
(1 − ρ)

(
(1 − ρ) (R1)2

σ(φ+ 1) + 2R1(σ + φ) − (1 − ρ)R2σ
)

+ 1
)

+ φ
)

ρ(1 − βρ)
(

(1 − ρ)2σ2
(

(R1)2 (φ+ 1) + R2

)
+ σ(1 + 2(1 − ρ)R1(φ+ 1)) + φ

)2 < 0

∂ϕdss
π

∂R2
= − θκ2(1 − ρ)3σ3(σ((1 − ρ)R1(φ+ 1) + 1) + φ)

ρ(1 − βρ)
(
θλ+ κ(1 − ρ)σ

(
(1 − ρ) (R1)2

σ(φ+ 1) + 2R1(φ+ 1) + (1 − ρ)R2σ
))2 < 0

The latter is clearly negative. The former is negative if the term in the numerator
is positive, i.e. if:35

(
σ

(
(1 − ρ)

(
(1 − ρ)R2

1σ(φ+ 1) + 2R1(σ + φ) − (1 − ρ)R2σ
)

+ 1
)

+ φ
)
> 0 (92)

From (51) and 52 it is evident that R2
1 > R2 since:

R2
1 = f2

R

f(Rr)2 > R2 = f2
R

f(Rr)2 − fRRf(Rr)
f(Rr)2 > 0

Hence, (92) is indeed positive. An increase in the severity of both the first and the
second-order effects of the risk-taking channel R1 and R2 unambiguously reduces
the Taylor rule coefficient, just as in appendix B3.1.

35This condition has a mathematical interpretation: The parameters R1, R2 in the objective
function (87) reduce the Taylor rule coefficient ϕdss

π , while the parameter R1 in the Phillips curve
(89) increases this coefficient. This condition is satisfied if the effect through the Phillips curve is
smaller than the countervailing effect through the objective function.

ECB Working Paper Series No 2772 / February 2023 50



Dynamics under the optimal simple rule

Next, we analyze dynamics under this optimal simple rule. To do so we solve the
following system, using the method of undetermined coefficients:

xt = Etxt+1 − 1
σ

(
R̂t − Etπt+1

)
∀t (93)

πt = βEtπt+1 + κ (σ + φ) x̂t − κ (1 + φ) Ř1R̂
r
t + ut (94)

R̂r
t = R̂t − Etπt+1 ∀t (95)

R̂t = ϕdss
π (R̄1, R̄2)Etπt+1 (96)

Note that in writing down the above system we have distinguished between (i) R1

in the Phillips curve (94), which we relabelled Ř1, and (ii) R1 and R2 in the central
bank’s policy function (96), which we relabelled R̄1 and R̄2. This allows us to
distinguish the effect that the risk-taking channel has (i) through the change in the
dynamics of the private sector (ii) through the change in the optimal behavior of the
central bank. If the central bank is fully aware of the risk-taking channel naturally
R̄x = Řx for x = 1, 2. If the central bank behaves as if the channel didn’t exist,
then R̄x = 0 (but still Ř1 ̸= 0) .
We want to assess what different policy rules imply for the behaviour of the economy.
To do so, we derive equilibrium outcomes wrt. R̄1 and R̄2. This tells us how the
equilibrium in the risk-taking channel economy characterized by (93)-(95) changes
when the central bank adjusts its policy rule from a rule that the central banks finds
optimal when it underestimates the strength of the risk-taking channel towards the
rule that is optimal given the actual strength of the risk-taking channel. This is in
line with the numerical exercise we conduct in the last section of the paper.
The exercises yields the following policy functions: xt = aut, πt = but R̂t = cut and
R̂r

t = dut where

a =
θκ

[
σ

(
(1 − ρ)R̄1(φ+ 1) + 1

)
+ φ

]
e

(97)
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b =
(1 − βρ)

(
θλ+ κ(1 − ρ)σ

(
(1 − ρ)

(
R̄1

)2
σ(φ+ 1) + 2R̄1(φ+ 1) + (1 − ρ)R̄2σ

))
e

(98)

c =
θ

(
λ

(
ρ− βρ2)

+ κ(ρ− 1)σ(σ((ρ− 1)R̄1(φ+ 1) − 1) − φ)
)

e
(99)

−
κ(ρ− 1)ρσ(βρ− 1)

(
(ρ− 1)

(
R̄1

)2
σ(φ+ 1) − 2R̄1(φ+ 1) + (ρ− 1)R̄2σ

)
e

d = a (100)

where

e = κ(1 − ρ)σ(1 − βρ)2
(

(1 − ρ)
(
R̄1

)2
σ(φ+ 1) + (1 − ρ)R̄2σ + 2R̄1(φ+ 1)

)
+θ

{
λ(1 − βρ)2 + κ2 [

σ
(
(1 − ρ)R̄1(φ+ 1) + 1

)
+ φ

] [
σ

(
(1 − ρ)Ř1(φ+ 1) + 1

)
+ φ

]}
> 0

Recall from section B3.1 that the coefficients a to d determine the standard devia-
tions of the respective variables. Analogously to what we did in sections B3.1 and
B3.3, we compute the rate of change of these standard deviations with respect to
the policy related risk-taking channel parameters R̄1 and R̄2. Consider first the
rates of change of standard deviations wrt. R̄2.

σx,R̄2 = σRr,R̄2 = −κ(1 − ρ)2σ2(1 − βρ)2

e
< 0 (101)

σπ,R̄2 = θκ3(1 − ρ)2σ2(σ((1 − ρ)R̄1(φ + 1) + 1) + φ)(σ((1 − ρ)Ř1(φ + 1) + 1) + φ)(
θλ + κ(1 − ρ)σ

(
(1 − ρ)

(
R̄1

)2
σ(φ + 1) + 2R̄1(φ + 1) + (1 − ρ)R̄2σ

))
e

> 0 (102)

We find that σx,R̄2
and σRr,R̄2

are negative while σπ,R̄2
is positive, just as in section

B3.1.
Turn next to the rates of change wrt. R̄1, which are given by

σx,R̄1
= σRr,R̄1

= −

(1 − ρ)σ(φ + 1)(1 − βρ)2
(

σ

(
(1 − ρ)

(
(1 − ρ)

(
R̄1

)2
σ(φ + 1) + 2R̄1(σ + φ) − (1 − ρ)R̄2σ

)
+ 1

)
+ φ

)
(

σ((1 − ρ)R̄1(φ + 1) + 1) + φ
)

g
< 0

(103)
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σπ,R̄1
=

θκ(1 − ρ)σ(φ + 1) [σ ((1 − ρ)R1(φ + 1) + 1) + φ]
(

σ

(
(1 − ρ)

(
(1 − ρ)

(
R̄1

)2
σ(φ + 1) + 2R̄1(σ + φ) − (1 − ρ)R̄2σ

)
+ 1

)
+ φ

)
(

(1 − ρ)2σ2
((

R̄1
)2

(φ + 1) + R̄2

)
+ σ(1 + 2(1 − ρ)R̄1(φ + 1)) + φ

)
g

> 0

(104)

where

g = (1 − βρ)2
(
(1 − ρ)σ2

(
R̄2

1(φ+ 1) + R̄2
)

+ σ(1 + 2(1 − ρ)R̄1(φ+ 1)) + φ
)

+θκ
(
σ((1 − ρ)R̄1(φ+ 1) + 1) + φ

) (
σ((1 − ρ)Ř1(φ+ 1) + 1) + φ

)
> 0

In (103) and (104) the denominators are clearly positive and the numerator is pos-
itive if the aforementioned term (92) is positive, which we have estabilished before.
Thus, σx,R̄1

and σRr,R̄1
are negative while σπ,R̄1

is positive. That is, the signs of the
rates of change wrt. to the first order term line up with those of the second order
term.
In sum, when the central bank accounts for the risk-taking channel in optimizing its
policy function, it responds less strongly to inflation, which leads to more inflation
and less real rate and output gap volatility. This coincides with the case of an
undistorted steady state.
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Table 4: Appendix C: Coefficients for the numerical optimisation: Priors and
posterior values of Bayesian estimation. For details see Abbate and Thaler (2019).

parameter prior shape prior mean prior std post. mean 90% HPD interval
structural parameters

µy trend growth norm 0.4 0.1 0.4270 0.3913 0.4618
µl labor normalization norm 0 2 -0.0885 -1.6666 1.4739
α output share norm 0.3 0.05 0.2004 0.1619 0.2396

100 1−β
β

real rate in % norm 0.25 0.1 0.4252 0.3000 0.5497

ε̄P price markup norm 1.25 0.12 1.5059 1.3584 1.6516
π̄ inflation in % gamma 0.62 0.1 0.6285 0.4902 0.7640

ϕπ TR weight on inflation norm 1.5 0.25 1.8712 1.5489 2.1951
ϕy TR weight on output norm 0.12 0.05 0.0194 -0.0359 0.0742
ρ TR persistence beta 0.75 0.1 0.8412 0.8062 0.8775
κ investment adj. costs norm 4 1.5 7.4517 5.5854 9.2988
ι habits norm 0.7 0.1 0.7776 0.7055 0.8518

σc risk aversion gamma 1.5 0.375 1.7366 1.2684 2.1780
σl disutility from labor gamma 2 0.75 2.0390 0.9705 3.0888
λp price calvo parameter beta 0.5 0.1 0.6201 0.5404 0.6996
λw wage calvo parameter beta 0.5 0.1 0.8478 0.8099 0.8860
γp price indexation beta 0.5 0.15 0.1528 0.0529 0.2471
γw wage indexation beta 0.5 0.15 0.4469 0.2104 0.6858
ξ equity premium norm 0.015 0.01 0.0226 0.0077 0.0355
θ liquidation value norm 0.5 0.1 0.7416 0.6447 0.8407
k̄ equity ratio norm 0.12 0.05 0.1231 0.1207 0.1253

structural shock processes
σA stdev TFP unif 0 10 0.3667 0.3175 0.4144
σB stdev preference unif 0 10 3.4561 2.257 4.6229
σG stdev govt. spending unif 0 10 2.2669 1.9838 2.536
σI stdev investment unif 0 10 4.7234 3.036 6.3548
σP stdev price markup unif 0 1 0.1334 0.1086 0.1570
σR stdev monetary unif 0 1 0.1165 0.1009 0.1319
σW stdev wage markup unif 0 10 0.4744 0.4098 0.5380
σξ stdev equity premium unif 0 10 0.5157 0.2055 0.8752
ρA persistence TFP beta 0.5 0.2 0.9008 0.8476 0.9565
ρB persistence preference beta 0.5 0.2 0.1879 0.0340 0.3289
ρG persistence gov.

spending
beta 0.5 0.2 0.9770 0.9619 0.9923

ρI persistence investment beta 0.5 0.2 0.7720 0.6721 0.8743
ρP persistence price markup beta 0.5 0.2 0.9586 0.9211 0.9963
ρR persistence monetary beta 0.5 0.2 0.4605 0.3461 0.5752
ρW persistence wage markup beta 0.5 0.2 0.9009 0.8556 0.9473
ρξ persistence equity

premium
beta 0.5 0.2 0.8161 0.7636 0.8707

ρG,A correlation gov.
spending & TFP

beta 0.5 0.2 0.6545 0.3861 0.9352

mp MA component of price
markup

beta 0.5 0.2 0.7759 0.6803 0.8745

mw MA component of wage
markup

beta 0.5 0.2 0.9744 0.9519 0.9967
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