Dalibor Stevanović
- 18 September 2020
- WORKING PAPER SERIES - No. 2468Details
- Abstract
- We consider simple methods to improve the growth nowcasts and forecasts obtained by mixed frequency MIDAS and UMIDAS models with a variety of indicators during the Covid-19 crisis and recovery period, such as combining forecasts across various specifications for the same model and/or across different models, extending the model specification by adding MA terms, enhancing the estimation method by taking a similarity approach, and adjusting the forecasts to put them back on track by a specific form of intercept correction. Among all these methods, adjusting the original nowcasts and forecasts by an amount similar to the nowcast and forecast errors made during the financial crisis and following recovery seems to produce the best results for the US, notwithstanding the different source and characteristics of the financial crisis. In particular, the adjusted growth nowcasts for 2020Q1 get closer to the actual value, and the adjusted forecasts based on alternative indicators become much more similar, all unfortunately indicating a much slower recovery than without adjustment and very persistent negative effects on trend growth. Similar findings emerge also for the other G7 countries.
- JEL Code
- C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
- 22 November 2018
- WORKING PAPER SERIES - No. 2206Details
- Abstract
- Temporal aggregation in general introduces a moving average (MA) component in the aggregated model. A similar feature emerges when not all but only a few variables are aggregated, which generates a mixed frequency model. The MA component is generally neglected, likely to preserve the possibility of OLS estimation, but the consequences have never been properly studied in the mixed frequency context. In this paper, we show, analytically, in Monte Carlo simulations and in a forecasting application on U.S. macroeconomic variables, the relevance of considering the MA component in mixed-frequency MIDAS and Unrestricted-MIDAS models (MIDAS-ARMA and UMIDAS-ARMA). Specifically, the simulation results indicate that the short-term forecasting performance of MIDAS-ARMA and UMIDAS-ARMA is better than that of, respectively, MIDAS and UMIDAS. The empirical applications on nowcasting U.S. GDP growth, investment growth and GDP deflator inflation confirm this ranking. Moreover, in both simulation and empirical results, MIDAS-ARMA is better than UMIDAS-ARMA.
- JEL Code
- E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods