Dimitris Korobilis
- 7 October 2021
- WORKING PAPER SERIES - No. 2600Details
- Abstract
- This paper develops a Bayesian quantile regression model with time-varying parameters (TVPs) for forecasting inflation risks. The proposed parametric methodology bridges the empirically established benefits of TVP regressions for forecasting inflation with the ability of quantile regression to model flexibly the whole distribution of inflation. In order to make our approach accessible and empirically relevant for forecasting, we derive an efficient Gibbs sampler by transforming the state-space form of the TVP quantile regression into an equivalent high-dimensional regression form. An application of this methodology points to a good forecasting performance of quantile regressions with TVPs augmented with specific credit and money-based indicators for the prediction of the conditional distribution of inflation in the euro area, both in the short and longer run, and specifically for tail risks.
- JEL Code
- C11 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Bayesian Analysis: General
C22 : Mathematical and Quantitative Methods→Single Equation Models, Single Variables→Time-Series Models, Dynamic Quantile Regressions, Dynamic Treatment Effect Models &bull Diffusion Processes
C52 : Mathematical and Quantitative Methods→Econometric Modeling→Model Evaluation, Validation, and Selection
C53 : Mathematical and Quantitative Methods→Econometric Modeling→Forecasting and Prediction Methods, Simulation Methods
C55 : Mathematical and Quantitative Methods→Econometric Modeling→Modeling with Large Data Sets?
E31 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Price Level, Inflation, Deflation
E37 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Forecasting and Simulation: Models and Applications
E51 : Macroeconomics and Monetary Economics→Monetary Policy, Central Banking, and the Supply of Money and Credit→Money Supply, Credit, Money Multipliers