Search Options
Home Media Explainers Research & Publications Statistics Monetary Policy The €uro Payments & Markets Careers
Suggestions
Sort by

Simone Arrigoni

11 August 2020
WORKING PAPER SERIES - No. 2451
Details
Abstract
In this paper we assess the merits of financial condition indices constructed using simple averages versus a more sophisticated alternative that uses factor models with time varying parameters. Our analysis is based on data for 18 advanced and emerging economies at a monthly frequency covering about 70% of the world’s GDP. We use four criteria to assess the performance of these indicators, namely quantile regressions, Structural Vector Autoregressions, the ability of the indices to predict banking crises and their response to US monetary policy shocks. We find that averaging across the indicators of interest, using judgemental but intuitive weights, produces financial condition indices that are not inferior to, and actually perform better than, those constructed with more sophisticated statistical methods.
JEL Code
E32 : Macroeconomics and Monetary Economics→Prices, Business Fluctuations, and Cycles→Business Fluctuations, Cycles
E44 : Macroeconomics and Monetary Economics→Money and Interest Rates→Financial Markets and the Macroeconomy
C11 : Mathematical and Quantitative Methods→Econometric and Statistical Methods and Methodology: General→Bayesian Analysis: General
C55 : Mathematical and Quantitative Methods→Econometric Modeling→Modeling with Large Data Sets?

Our website uses cookies

We use functional cookies to store user preferences; analytics cookies to improve website performance; third-party cookies set by third-party services integrated into the website.

You have the choice to accept or reject them. For more information or to review your preference on the cookies and server logs we use, we invite you to:

Read our privacy statement

Learn more about how we use cookies